
265

American Economic Journal: Microeconomics 2014, 6(3): 265–285 
http://dx.doi.org/10.1257/mic.6.3.265

Sequential Kidney Exchange †

By Lawrence M. Ausubel and Thayer Morrill *

The traditional literature on kidney exchange assumes that all com-
ponents of the exchange must occur simultaneously. Unfortunately, 
the number of operating rooms required for concurrent surgeries 
poses a significant constraint on the beneficial exchanges that may 
be attained. The basic insight of this paper is that incentive compati-
bility does not require simultaneous exchange; rather, it requires that 
organ donation occurs no later than the associated organ receipt. 
Using sequential exchanges may relax the operating room constraint 
and thereby increase the number of beneficial exchanges. We show 
that most benefits of sequential exchange can be accomplished with 
only two concurrent operating rooms. (JEL D47, I11)

Kidney exchange provides a vivid illustration of the challenges and potential 
of market design. The idiosyncratic constraints of the problem are not mere 

technicalities to be abstracted away, but rather lie at the very heart of the market 
design problem. First and foremost, kidney exchange faces the constraint that a 
market, in the usual sense of the word, is illegal. This creates the obvious prob-
lem that we may not buy or sell kidneys but instead must exchange one kidney for 
another. However, it also creates a more subtle incentive constraint. An agent cannot 
write a contract compelling another agent to donate her kidney if she has already 
received a kidney in kind. As a result, the order in which kidneys are exchanged is 
crucial to the exchange being incentive compatible. For this reason, exchanges have 
been performed simultaneously so that neither party has the incentive to renege on 
the agreement.

However, this creates an additional constraint that the market designer must over-
come. Exchanges must take place in close proximity and there is a limit to the num-
ber of organ transplants that can be performed simultaneously in the same hospital. 
We call this the hospital capacity constraint. Even a two-way exchange involves 
four simultaneous surgeries. Therefore, in most instances to date, kidney exchanges 
have been limited to two-way exchanges.1

1 Kidney exchange was introduced as a market design problem in seminal papers by Roth, Sönmez, and Ünver 
(2004, 2005a, b).
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Roth, Sönmez, and Ünver (2007) discuss the challenges and potential gains from 
an efficiently designed kidney exchange market.2 They demonstrate that expand-
ing the number of possible exchanges to include three-way as well as two-way 
exchanges would substantially increase the number of possible exchanges. In fact, 
recent research by Ashlagi et al. (2012) indicates that there is a substantial efficiency 
loss from limiting exchanges to even three-way or four-way exchanges. This is due 
to the fact that in practice there is a higher percentage of highly sensitized patient 
in an exchange pool than in the general patient population, and as a result, these 
patients are more difficult to match using only short cycles.

One obvious approach for making three-way or higher exchanges feasible is to 
replace simultaneous operations with appropriately sequenced operations. A require-
ment of simultaneous trade is more stringent than necessary. Rather, incentive com-
patibility continues to be satisfied if, for every donor-patient pair, the donation occurs 
no later than the associated receipt of a kidney.

In this paper, we exhibit theoretical environments where there are potential ben-
efits to sequential kidney exchange and we take the insight to its logical conclusion. 
In particular, with a stationary population of agents, sequential kidney exchange 
allows us to achieve the maximal number of transplants while preserving incentive 
compatibility, and yet never requiring more than two simultaneous operations. With 
a population consisting partly of recurring agent types and partly of unique agent 
types, sequential kidney exchange can be utilized to ease the hospital capacity con-
straint, both for recurring types and for unique types.

In many ways, this is analogous to the classic treatment of retirement savings in 
Samuelson’s overlapping generations (OLG) model (Samuelson 1958). The basic 
problem of retirement savings is that each generation would like to produce goods 
in the first period of its life and to consume goods in the second period of its life. 
However, the goods are perishable, so any generation cannot save directly for its 
own future. The problem is resolved in the OLG model by having, in each period, 
the current working-age generation produce goods for the previous generation—
with the expectation that, in their retirement, goods will be produced for them by 
the next generation. This arrangement is incentive compatible on account that each 
generation is required to give up goods before receiving goods. Sequencing in the 
opposite direction would not be incentive compatible.

Similarly, in the kidney exchange problem, it may not be feasible for each donor 
(of a set of donor-patient pairs) to give up a kidney and for each patient (of the same 
set of donor-patient pairs) to receive a kidney simultaneously. However, it may be 
feasible for each donor to give up a kidney in period t and for each of the associ-
ated patients to receive a kidney in period t + 1, as fewer concurrent operations are 
required. Effectively, each donor donates a kidney to the previous “generation” and 
each patient receives a kidney from the next “generation.” Moreover, there is no 

2 As an indicator of the magnitude of this problem, as of December 13, 2009, there were 81,678 patients on 
the cadaver kidney waiting list in the United States. In 2008, 32,587 patients were added to the waiting list while 
29,207 were removed. Of the patients removed, 4,746 patients died and 1,600 were removed because they became 
too sick to receive a transplant.
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incentive obstacle to this sequencing, provided that each donor gives before—not 
after—the associated patient receives.

We illustrate this with a simple example. Figure 1 is a simple illustration with 
three agents. Each agent consists of a patient needing a kidney and her incompatible 
donor. We represent each agent by the blood type of the patient and the blood type 
of the donor. A type-A (resp. B) patient is incompatible with a type-B (A) donor; see 
Roth, Sönmez, and Ünver (2004) for a detailed description of kidney compatibility. 
In this example, only two patients may be accommodated if we limit attention to 
two-way exchanges. However, if we allow larger exchanges, then all three agents 
may receive a kidney.

Figure 2 illustrates the same example if agents are allowed to donate to agents in 
different periods. Now, the (A, B) agent gives to the (B, A) agent in one period and 
receives a kidney from next period’s (A, A) agent, etc. We are able to achieve full 
efficiency, and yet no more than two concurrent operating rooms are required. Note 
that the sequential exchange has no effect on the number of operations required; 
six operations must always be performed to transplant three kidneys. The key is 
that the sequential exchanges eliminate the need for the operations to be performed 

a2 = (A, B)

a3 = (B, A)

a1 = (A, A)

Figure 1

Notes: Each node represents a donor-patient pair. An A-blood-type patient is incompatible with 
a B-blood-type donor, but compatible with an A-blood-type donor.
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simultaneously. The hospital capacity constraint only binds when the operations 
must be performed at exactly the same time. For example, a hospital with only 
two operating rooms cannot perform six simultaneous operations, but this hospi-
tal would be quite capable of scheduling six operations over three days. This is 
the advantage of sequential exchange; we are no longer constrained by a hospital’s 
capacity to perform operations concurrently.

In our formal model, an identical population of people enters every period. The 
relevant notion of an agent is a pair comprising a kidney patient and an associated 
live donor. We initially focus on sequential exchanges in which the donor contrib-
utes her kidney exactly one period before the associated patient receives a kidney 
from another donor. In our first proposition, we show that when exchanges are done 
sequentially, we can match the same number of patients as with any simultaneous 
exchange in the static model. In our second proposition, we limit attention to sta-
tionary sequential exchanges and we show, conversely, that the number of patients 
matched cannot exceed the upper bound provided by the static model. The differ-
ence is that optimality in the static model may require n-way exchanges (requiring 
2n operating rooms), whereas the sequential exchanges never require using more 
than two operating rooms simultaneously.

Next, we consider the robustness of a sequential exchange to a nonstationary 
population. We demonstrate that to the extent that there is a subpopulation with iso-
morphic characteristics in each period then many of the same benefits may be real-
ized as with a stationary population. Specifically, a sequential exchange may easily 
be modified in each period to accommodate a dynamic population so long as the 

a1 a1

t − 1 t t + 1

a1

a3 a3 a3

a2 a2 a2

Figure 2

Note: The incentive and hospital capacity constraints are satisfied if agents donate a kidney before they receive 
a kidney.
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designer continues to include the isomorphic subpopulation. The advantage is that 
any exchange to a member of the subpopulation may be implemented as a sequential 
exchange, thereby relaxing the hospital capacity constraint.

We then consider “hybrid” exchanges in which transplants may occur both sequen-
tially and simultaneously, and we consider longer waiting times than a single period. 
Although sequential exchanges ease the hospital capacity constraint, it comes at the 
cost of making patients wait an extra period to receive a kidney. A hybrid exchange 
serves as a compromise between these two tradeoffs. Suppose, for example, that a 
hospital has the capacity for a two-way exchange but not a three-way exchange. If 
the designer wishes to maximize the number of possible exchanges, subject to the 
capacity constraint, while minimizing the waiting time of each patient, then a hybrid 
exchange is superior to a sequential exchange. Compare Figure 2 to Figure 3. In the 
static exchange, at most two kidneys may be exchanged. In the sequential exchange, 
three kidneys are exchanged, only two hospital rooms are used at any given time, 
but all patients must wait a period to receive their kidney. In the hybrid exchange, 
three kidneys are exchanged, at most four hospital rooms are used at any given time, 
and only one patient must wait a period to receive her kidney. Our next proposition 
demonstrates that this tradeoff holds in general.

Observe that hybrid exchanges can only improve the number of feasible exchanges 
relative to the traditional analysis, as simultaneous exchanges are a special case. At 
the same time, it could be misleading to compare the number of exchanges pos-
sible in sequential exchanges with longer waiting times versus the number possible 
with only simultaneous exchanges, as we have effectively multiplied the population 
being matched by a factor related to the waiting time. This can be formalized by 

Figure 3

Notes: A hybrid exchange. All possible exchanges can occur while using at most four concurrent operating rooms 
and requiring only one patient each period to wait to receive a kidney.

t − 1 t t + 1

a2 a2 a2

a3 a3 a3

a1 a1 a1
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considering k-replicated economies in which there are k agents of each type. It turns 
out that there is a natural relationship between hybrid matching in which agents may 
be required to wait up to k periods and static matching in the k-replicated economy. 
In our fourth proposition, we show that, for any static exchange in a k-replicated 
economy, there exists a corresponding hybrid exchange in the unreplicated but 
repeated economy with waiting times of up to k periods, and in our fifth proposition, 
we establish the converse.

The most closely related literature on kidney exchange concerns nonsimultane-
ous, extended, altruistic-donor (NEAD) chains. In a NEAD chain, an altruistic donor 
initiates a sequence of “domino transplantations” (Montgomery et al 2006; Roth 
et al. 2006; Rees et al. 2009). Within the sequence, exchanges may be done simulta-
neously or sequentially. The principal difference from the sequential and hybrid kid-
ney exchanges explored in the current paper is that the sequencing goes in the exact 
opposite direction. A NEAD chain creates a “bridge donor”—an agent who is asked 
to donate after the associated receipt of a kidney. While the medical literature typi-
cally does not use the language of incentive compatibility, it is extremely concerned 
about “reneging risk.” For example, in the American Journal of Transplantation, 
Gentry et al. (2009) write: “However, NEAD chains … run the risk of a bridge donor 
reneging, and add logistical complexity in that programs must maintain contact with 
bridge donors after a chain segment is completed.” Empirically, they report that 
a NEAD chain at the Johns Hopkins Hospital was broken when a bridge donor 
reneged, and they conclude:

A long wait between a donor’s intended recipient getting a transplant and 
the donor’s future nephrectomy could be a disadvantage if there is even a 
small chance that the donor will withdraw consent or become ineligible 
for health reasons. Additionally, it may be viewed as coercive to ask a 
donor’s consent for his own nephrectomy many months after his intended 
recipient has been transplanted, especially if the recipient has had a poor 
outcome. — (Gentry et al. 2009, 1335)

By way of contrast, there is no reneging risk in the sequential or hybrid kidney 
exchanges of our paper: an agent never receives a kidney before giving one. However, 
we retain the advantages of a NEAD chain. As exchanges are nonsimultaneous, they 
reduce the logistical barriers to a many-agent exchange and may increase the num-
ber of agents that are able to be matched. For example, Rees et al. (2009) describes 
ten kidney transplants initiated by a single altruistic donor.3

Our paper is also related to a number of recent papers that consider matching in a 
dynamic environment. The article most relevant to ours is Ünver (2010), who con-
siders the optimal exchange of kidneys in a stochastic environment. In his model, 

3 An alternative approach to a NEAD chain is a “domino paired donation” (DPD). A DPD is a chain of dona-
tions initiated by a nondirected donor. All exchanges are performed simultaneously and the donor in the last pair 
donates to a candidate on the waiting list. Ashlagi et al. (2010) run simulations using actual patient data from the 
Alliance for Paired Donation to compare the number of transplants that results from NEAD chains versus DPD. In 
particular, they compare relative performance for a range of renege rates for each bridge donor in a NEAD change. 
Even for relatively high renege rates, they find that NEAD chains outperform DPD when chains of length greater 
than four are allowed.
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agents arrive with a stochastic Poisson process. The question he considers is when 
should a central authority conduct exchanges so that it makes an efficient assignment 
while minimizing waiting costs. While Ünver’s model considers only simultane-
ous exchanges, the question of when to perform exchanges is just as relevant to the 
sequential exchanges considered in our paper. We take the timing of exchanges as 
given, but allow for a dynamic population. Determining when these exchanges should 
occur would be essential for implementing a system of sequential exchanges.

There are also several recent papers that study dynamic assignment problems 
in an overlapping generations (OLG) framework. The first was Kurino (2014), 
who introduces a model of housing allocation with overlapping generations. Bloch 
and Cantala (2013) also consider a dynamic housing allocation problem. Kennes 
et  al. (2012) consider the dynamic problem of assigning children to daycare in  
an OLG framework. Dur (2012) studies a dynamic school choice problem using an 
OLG model. A critical difference between these papers and ours (along with Ünver 
2010) is that these papers model assignment of objects whereas our paper models 
exchange among agents. In assignment problems, an object is not attached to any 
particular agent and the object persists after the agent leaves. In exchange problems, 
each object begins by being attached to a particular agent; therefore it cannot be 
assigned, but must be exchanged. Importantly for an OLG framework, the object 
exits the model whenever the associated agent exits.

This paper is structured as follows. In Section I, we develop sequential kidney 
exchange in a stationary population. In Section II, we show robustness of our con-
clusions with a nonstationary population. Section III explores efficiency in a repli-
cated economy. In Section IV, we conclude.

I.  Efficiency in a Stationary Population

We begin by describing the static kidney exchange problem. Our primitive is the 
graph G representing the agents and their compatibilities for transplants. The graph 
has N nodes, representing the N agents. Each agent ​a​i​ = (​p​i​ , ​d​i​) is a pair comprising a 
patient ​p​i​ and an associated donor ​d​i​ . We denote the set of agents by X = {​a​1​, … , ​a​N​}.  
Edges of the graph are directional. There is an edge connecting agent ​a​i​ to agent ​a​j​ 
if and only if donor ​d​i​ is compatible with patient ​p​j​ ; more formally:

(1) 	​  e​​a​i​ , ​a​j​​ ∈ G  ⇔ ​ d​i​  and ​ p​j​ are compatible.

Next, we describe the repeated version of the same problem. At every time t ∈ ℤ, 
there is a set of agents ​X​t​ ≡ {​a​1t​ , … , ​a​Nt​}. Let ​X​ ∞​ ≡ {​X​t​ : t ∈ ℤ} be the set of all 
agents. Each agent ​a​it​ = ​(  ​p​it​ , ​d​it​ )​ is a pair comprising a patient ​p​it​ and an associated 
donor ​d​it​ . The compatibilities of donors ​d​is​ and patients ​p​jt​ are exactly those induced 
by graph G:

(2) 	​  e​​a​i​ , ​a​j​​ ∈ G  ⇔ ​ d​is​  and ​ p​jt​ are compatible for all s, t ∈ ℤ.

We denote the graph in the repeated model by ​G​ ∞​. We consider an infinitely repeated 
kidney exchange and compare the efficiency of exchanges that are constrained to be 
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simultaneous with exchanges that may be across periods. In the next section, we 
relax the assumption that the population is isomorphic in each period.

If agent j is involved in an exchange, it must receive a kidney from some agent i 
and give a kidney to some agent k. Therefore, {​e​​a​i​ , ​a​j​​ , ​e​​a​j​ , ​a​k​​} ⊂ G. For the static model, 
this implies that a kidney exchange is a disjoint union of cycles.

Definition: Given a population G, a cycle is a set of agents {​a​1​ , … , ​a​n​} ⊆ X 
such that each agent appears only once, ​e​​a​i​  , ​a​i+1​​ ∈ G,i ∈ {1, … , n − 1} and ​e​​a​n​ , ​a​1​​ ∈ G. 
A static kidney exchange is the disjoint union of cycles in G.

Remark: A static kidney exchange S induces a function μ : G → G in a natural 
way. For each cycle {​a​1​ , … , ​a​n​} ∈ S, define μ(​a​i​) = ​a​i+1​  for 1 ≤ i < n and μ(​a​n​) = ​a​1​.  
If an agent a is not part of any cycle in S, define μ(a) = ∅. An agent a is said to be 
satisfied in a static kidney exchange if a receives a donated kidney, μ(a) ≠ ∅.

As mentioned earlier, institutional constraints may limit the length of an allowable 
kidney exchange. Therefore, define an n-way static kidney exchange to be the disjoint 
union of cycles of length no greater than n. Our objective is to maximize the number 
of agents that receive a kidney subject to the incentive and capacity constraints.

Definition: Given a static kidney exchange problem G, define ​Δ​n​(G ) to be the  
maximum-cardinality n-way static kidney exchange of G. Define Δ(G ) to be 
the maximum unbounded static kidney exchange. Equivalently,

 	  Δ(G)  = ​  lim   
n→∞​ ​Δ​n​ (G).

In the repeated model, initially we restrict our attention to the case where an agent 
in period t may only donate to an agent in period t − 1. We consider more general-
ized exchanges in Section III. An agent may only receive a kidney if she has already 
donated a kidney, and a kidney exchange is a matching in which each agent who 
donates a kidney also receives a kidney.

Definition: A sequential kidney exchange is a one-to-one function f : ​X​ ∞​ → ​X​ ∞​ 
such that for every ​a​it​ = ( ​p​it​ , ​d​it​) ∈ ​X​t​:

	 (i )	 f (​a​it​) ∈ ​X​t−1​ ∪ ∅

	 (ii )	 if f (​a​i​) ≠ ∅,    then   ​ e​​a​i​ ,  f (​a​i​)​ ∈ G    and    ∃ ​a​∗​ ∈ ​X​t+1​    such that    f (​a​∗​) = ​a​it​ .

The key advantage of a sequential kidney exchange is that the hospital capacity con-
straint is no longer binding. In a static exchange, the smallest possible exchange, a 
two-way exchange, requires four hospital operating rooms. In a sequential exchange, 
each exchange only requires two hospital rooms. This is the best-case scenario as 
any noncadaver donation requires two operating rooms. Note that the incentive con-
straint is still satisfied as each agent gives a kidney before she receives one.

In a sequential kidney exchange, the exchanges no longer consist of disjoint 
cycles but instead are infinite chains. Since there are no binding contracts, an agent 
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must believe she will receive a kidney in the next period in order to be willing to 
donate a kidney in the current period. An agent has a clone in each period. If a 
previous period’s clone did not receive a kidney, she may be reasonably skeptical 
that donating a kidney in this period will result in her receiving a kidney in the next 
period. However, if her clone has received a kidney in every previous (and infinitely 
many) period, then she should be confident in the exchange. As a result, we focus 
on exchanges where the same population receives a kidney in every period. We call 
this a stationary exchange.

First, we show that a sequential exchange does at least as well as the unbounded 
static kidney exchange.

Proposition 1: Δ(G) many agents may be matched in a stationary sequen-
tial kidney exchange while never requiring more than two operating rooms for 
any exchange.

Proof: 
Each static exchange corresponds to a stationary sequential exchange in a natural 

way. Let μ be any static exchange, and let S be the set of agents that exchange a 
kidney. S = {​a​i​ : μ(​a​i​) ≠ ∅}. Consider any ​a​j​ , ​a​k​, ​a​l​ ∈ S, such that μ(​a​j​) = ​a​k​ and  
μ(​a​l​) = ​a​j​ . For every time t, define f (​a​jt​) = ​a​k(t−1)​. By construction, f (​a​l(t+1)​) = ​a​jt​ , 
so indeed every agent involved in the static match gives and receives a kidney. Since 
every static kidney exchange corresponds to a sequential exchange, the maximal, 
unbounded, static, kidney exchange corresponds to a sequential exchange.

One might think that there is enough flexibility in a dynamic exchange to improve 
on the number of agents that are matched. Unfortunately and rather interestingly, 
there is not.

Proposition 2: The maximum number of agents matched in any sequential, sta-
tionary exchange is Δ(X  ).

Proof: 
Look at any sequential, stationary exchange f. Fix any period t and let ​S​t​ be the set 

of agents that donate a kidney in period t. Since f is stationary, ​S​t​ = ​S​t−1​. Start with 
any ​a​​x​1​t​ ∈ ​S​t​ and let ​a​​x​2​(t−1)​ be the agent ​a​​x​1​t​ donates its kidney to. In general, let ​x​i​ 
be the index, such that f (​a​​x​i−1​t​) = ​a​​x​i​(t−1)​. Consider the sequence {​a​​x​1​t​ , ​a​​x​2​t​ , ​a​​x​3​t​ , …}.  
Since ​S​t​ is finite, the sequence must repeat an agent. Let ​a​​x​m ​t

​ be the first agent 
repeated. If ​x​m​ = ​x​i​ where i > 1, then

 	  f (​a​​x​m−1​t​)  = ​ a​​x​m​ t​  = ​ a​​x​i​ t​  =  f (​a​​x​i−1​t​).

This implies ​a​​x​i−1​t​ = ​a​​x​m−1​t​, which contradicts the minimality of m. Therefore 
i = 1 and {​a​​x​1​t​, … , ​a​​x​m−1​t​} is a cycle in G. Continue this process with any agent  
​a​lt​ ∈ ​S​t​\{​a​​x​1​t​, … , ​a​​x​m−1​t​}. This produces a disjoint union of cycles that corresponds 
to a static kidney exchange in G. Therefore, |S| ≤ Δ(G) by the definition of Δ(G). 
Proposition 1 implies that the number of agents matched in a maximal sequential 
kidney exchange is at least Δ(G).
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II.  Robustness to a Nonstationary Population

In real populations, even though some donor-patient pairs are comparatively rare 
in that one cannot count on a qualitatively similar agent to enter the pool for a long 
time, some donor-patient pairs are undoubtedly very common. This immediately 
suggests that a market designer could utilize sequential exchanges for common 
agent types and simultaneous exchanges for rare agent types, easing the operating 
room constraint. In this section, we show that the market designer can do better than 
this, by leveraging the existence of the more common types to facilitate the treat-
ment of the rarer types.

We model the nonstationary population by assuming that, in each period, there 
is a recurring subpopulation and a unique subpopulation. “Recurring” agents are 
donor-patient pairs that occur sufficiently often that the designer can count on a sim-
ilar pair to be present next month, allowing the agent’s participation to be sequential, 
as in Section I. “Unique” agents cannot be relied upon to create sequential trades, 
but they can still benefit from sequentiality involving the recurring agents.

Intuitively, a static cycle involving the overall population will often include both 
recurring types and unique types. Whenever the cycle passes through a recurring 
type, we can make the agent’s participation sequential, using the same device as in 
Section I: the donor is taken to be in one cohort, while the recipient is taken to be in the 
next cohort. This eases the operating room constraint, allowing for exchanges that 
could not otherwise occur. In this way, even unique agents, whose participation cannot 
be made sequential, benefit from the sequential participation of their trading partners.

As before, our primitive is the graph G representing the agents and their com-
patibilities for transplants. An “agent” is a pair comprising a patient and a donor. 
At every time t ∈ ℤ, a set of agents ​X​t​ enters the population. Each set ​X​t​ can be 
partitioned into a recurring population, ​Y​ t​ , and a unique population, ​Z​ t​ . We have  
​X​t​ = ​Y​t​ ∪ ​Z​t​ and ​Y​ t​ ∩ ​Z​t​ = ∅, for all t ∈ ℤ. Note that the population ​X​t​ is no lon-
ger restricted to have the same cardinality in each period. Let ​X​ ∞​ ≡ {​X​t​ : t ∈ ℤ} 
be the set of all agents. The recurring population, ​Y​ t​ , is isomorphic in each period. 
Specifically, for each agent ​a​it​ ∈ ​Y​ t​, and any time s, there exists an ​a​is​ ∈ ​Y​ s​, such that ​
a​it​ and ​a​is​ are compatible with the same set of agents. In particular, for any ​a​it​ ∈ ​Y​ t​ 
and ​x​i​ ∈ ​X​t​ , if ​x​i​’s donor is compatible with ​a​it​’s patient, then ​x​i​’s donor is also com-
patible with ​a​i(t−1)​’s patient.

In this section, we continue to restrict a sequential exchange so that an agent 
receives a kidney no more than one period after donating a kidney. However, as the 
population varies each period, we will now allow a combination of simultaneous 
and sequential exchanges to occur.

Definition: A semi-sequential kidney exchange is a one-to-one function  
f : ​X​ ∞​ → ​X​ ∞​, such that for every ​a​it​ = (​p​it​ , ​d​it​) ∈ ​X​t​:

	 (i )	 f (​a​it​) ∈ ​X​t−1​ ∪ ​X​t​ ∪ ∅ 

	 (ii )	 if  f (​a​it​)  ≠  ∅,  then  ​e​​a​it​ , f (​a​it​)​  ∈  G  and  ∃ ​a​∗​  ∈ ​X​t​  ∪  ​X​t+1​, such that  
f (​a​∗​) = ​a​it​ .
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Without loss of generality, we assume that, in every period t, there exists a static 
exchange of the agents ​X​t​ in which every agent in ​Y​ t​ is satisfied (“satisfied” defined 
as in Section I).4 We add two more definitions:

Definition: {​μ​t​​}​t∈ℤ​ is a static exchange profile if each ​μ​t​ is a static exchange 
on ​ X​t​ .

Definition: Let ​Δ​t​ Y​ be the maximum-cardinality static kidney exchange on ​X​t​ 
subject to the constraint that all agents in ​Y​ t​ are satisfied.

In the next proposition, we show that a static exchange profile in which every 
agent in ​Y​t​ is satisfied in each period t may be converted into a semi-sequential 
exchange in which each agent in ​Y​t​ participates sequentially. This shows that we 
are able to achieve ​Δ​t​ Y​ many exchanges in each period while reducing the number 
of simultaneous operations that are required. Moreover, this is the reason why the 
recurring subpopulation, Y, might be chosen to be less than maximal. If accommo-
dating all the agents in Y imposes a significant constraint, then the social planner 
may improve efficiency by not including in Y the agents that are the most dif-
ficult to match. Note that omitting an agent from Y does not imply that the agent 
will not be matched; it just eliminates the constraint that the agent is satisfied in 
every period.

Figures 4 and 5 demonstrate how we may convert a variety of static exchanges 
into semi‑sequential exchanges. If the static exchange has agent a giving to agent ​
y​it​ ∈ ​Y​ t​ , then the semi-sequential exchange simply has agent a give to ​y​i(t−1)​ ∈ ​Y​t−1​, 
the copy of ​y​i​ that already donated a kidney in the (t − 1)st period.

Proposition 3: Consider any static kidney exchange profile in which all agents 
in ​Y​ t​ are satisfied in every period t. Then the same trades can be accomplished in a 
semi-sequential kidney exchange in which any trade involving an agent in ​Y​ t​ requires 
only two simultaneous operating rooms.

Proof: 
Consider any static kidney exchange profile {​μ​t​​}​t∈ℤ​, such that in every period t, 

each agent ​y​it​ ∈ ​Y​ t​ is satisfied. Specifically, for every period t and every ​y​it​ ∈ ​Y​ t​ , there 
exists an agent ​a​it​ ∈ ​X​t,​ such that ​μ​t​(​a​it​) = ​y​it​ . We define a semi-sequential exchange 
as follows. Consider any agents ​a​it​ , ​a​jt​ ∈ ​X​t​, such that ​μ​t​(​a​it​) = ​a​jt​ . If ​a​j​ ∈ ​Y​ t​ , then 
set f (​a​it​) = ​a​j(t−1)​. Otherwise, set f (​a​it​) = ​a​jt​ . This semi-sequential exchange modi-
fies the static exchange profile in a natural way. Each agent in ​Y​ t​ receives a kidney 
from an agent in period t + 1. All other agents receive kidneys in the same periods 
in which they donate. This exchange is valid as each agent in ​Y​ t​ is satisfied in every 
period. As the exchanges involving agents in ​Y​ t​ are done sequentially, they require 
only two simultaneous operating rooms.

4 If ​Y​t​ cannot be satisfied in every period t, then redefine the recurrent population Y to be a maximal subset that 
can be satisfied in every period. For example, a static exchange consisting only of members in Y meets this criterion.
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Remark: Proposition 3 should not be misinterpreted to assert that every static 
kidney exchange profile can be restated as a semi-sequential kidney exchange 
requiring only two operating rooms. The static kidney exchange at time t could, 
for example, contain a cycle of n agents, all from the set ​Z​t​ . In that event, the cor-
responding semi-sequential exchange would still require 2n simultaneous oper-
ating rooms. However, to the extent that trades occur with agents in set ​Y​ t​ , the 
operating room constraint can be significantly relaxed. Specifically, if there are no 
more than m “consecutive” trades among members of ​Z​t​ , then 2m simultaneous  
operating rooms suffice. Figure 6, panel A gives an example where the 

Y Y ∪ Z1 Y ∪ Z2

t t + 1 t + 2 t + 3 t + 4 t + 5

Figure 4

Note: The populations used in Figure 5.

Figure 5

Notes: This example demonstrates how the populations from Figure 4 can be incorporated into a hybrid exchange. 
Instead of donating to a member of Y in the same period, the agent donates to the corresponding member of Y from 
one period earlier.
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semi-sequential exchange does not reduce the operating constraint relative to a 
static exchange. Figure 6, panel B gives an example of a static exchange that 
requires a six-cycle, while the corresponding semi-sequential exchange requires 
only two simultaneous rooms. The most beneficial case is one in which subset ​Y​ t​ 
is sufficiently large within the set ​X​t​ that all trades involve at least one agent from 
set ​Y​ t​ . In that event, we have the following corollary.

Corollary: Consider any static kidney exchange profile in which all agents in ​
Y​ t​ are satisfied every period t and such that each agent outside of ​Y​ t​ that receives a 
kidney donates to an agent in ​Y​ t​ . Then the same trades can be accomplished in 
a semi-sequential kidney exchange profile with the following properties:

	 (i )	 No more than two simultaneous operating rooms are required.

	 (ii )	 No agent needs to wait more than one period.

When choosing the recurrent population Y to satisfy sequentially, the designer 
faces a trade-off. Each additional member of Y reduces the number of simultane-
ous operating rooms required. However, the population Y potentially constrains the 
number of exchanges that may be achieved in a given period. It should be noted that 
there are populations that may always be satisfied without imposing a constraint 
on the maximum number of matches. For example, consider an agent a where both 
the donor and the patient have blood type A but the donor’s kidney is incompatible 
with the patient due to a positive crossmatch. As long as there is some patient with 
blood type A that receives a kidney in the maximal exchange, then a will always be 
included. For example, suppose ​a​i​ donates a kidney to ​a​j​ in an exchange and that ​a​j​’s  
patient has blood type A. Then if a where not included in the exchange, then we 

Panel A Panel B

Figure 6

Notes: In these two panels, circles represent members of ​Z​t​ while squares represent members of 
Y. The cycle on the left requires ten simultaneous operating rooms in both the static and hybrid 
exchanges. The cycle on the right requires 12 simultaneous rooms in a static exchange but only 
two simultaneous rooms in a hybrid exchange.
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could increase the number of kidneys donated by having ​a​i​ donate to a, a donate to ​
a​j​ , and otherwise leaving the exchange unchanged.

III.  Efficiency in a Replicated Economy

In this section, we examine a generalized sequential kidney exchange where the 
only restriction imposed is that an agent must give a kidney no later than when it 
receives a kidney. In particular, this allows an agent to participate in a simultaneous 
exchange, a sequential exchange where she donates a kidney but waits multiple peri-
ods before receiving a kidney, or a hybrid of the two. We show that there is a natural 
relationship between donors waiting up to k periods to receive a kidney and a static 
population being replicated k times.

Definition: A general hybrid sequential kidney exchange is a one-to-one func-
tion f : ​X​ ∞​ → ​X​ ∞​, such that for every ​a​it​ = (​p​it​ , ​d​it​) ∈ ​X​t​ :

	 (i )	 f (​a​it​) ∈ ​X​s​  ∪  ∅,  s  ≤  t

	 (ii )	 if  f (​a​it​)  ≠  ∅,  then ​ e​​a​i​ , f (​a​i​)​  ∈  G  and  ∃ ​a​∗​  ∈  ​X​r​ ,  r  ≥  t,  such that  
f (​a​∗​)  = ​ a​it​ .

In Section I, we saw that a particularly simple form of sequential exchange, in which 
agents wait a single period between donating and receiving a kidney, relaxed the 
operating room constraint. However, the cost of the sequential exchange is that all 
agents must wait a period to receive their kidney. Since we expect the hospital capac-
ity constraint to be greater than two, we first show how a hybrid exchange can be 
used to satisfy the capacity constraint yet reduce the number of agents that must wait 
a period. Figure 7 is an example where an efficient exchange requires a six-cycle, 
but the hospital capacity constraint only allows for a maximum of three simultane-
ous exchanges. As the next proposition shows, this result is quite general.

Proposition 4: For any α, a simultaneous exchange of length k > α can be con-
verted to a hybrid exchange where no more than α many simultaneous exchanges 
occur and at most ​⌊ ​ k _ α ​ ⌋​ + 1 agents must wait a period to receive their kidney.

Proof: 
Figure 7 captures the intuition for the argument. Consider any cycle of agents  

{​a​1​, ​a​2​, … , ​a​k​} in a simultaneous exchange. Now consider the following assignment 
in the replicated economy:

f (​a​jt​)  = 

⎧
⎪
⎪
⎨
⎪
⎪
⎩

​a​j+1, t​ j ≠ 0mod(α)

​a​j+1, t−1​    j = 0mod(α)

​a​1, t−1​ j = k .
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This exchange is well defined, no set of simultaneous exchanges involves more than 
α many agents, and at most ​⌊ ​ k _ α ​ ⌋​ + 1 agents must wait a period to receive their kidney.

A natural question to ask is whether any additional gains may be realized if we 
sometimes require agents to wait longer than a single period. However, it would 
be misleading to compare the number of exchanges possible with such a sequen-
tial exchange to the exchanges possible with only simultaneous exchanges, as we 
have effectively multiplied the population being matched by a factor related to 
the waiting time. In order to make a more reasonable comparison, we utilize the 
concept of a replicated economy and we compare the efficient number of matches 
in the generalized exchange with the efficient number of simultaneous matches in 
the replicated economy.

Definition: Given a graph G and its corresponding set of agents X, for any 
integer k, define the k-replicated economy ​G​ (k)​ as follows. The set of agents is ​
X​ (k)​ = {​a​ i​ 

j​ : i ∈ {1, … , N  }, j ∈ {0, … , k − 1}}. Moreover, ​e​ ​a ​ i​ j​ , ​a​ l​ m​​ ∈ ​G​ (k)​ if and only if  
​e​ ​a​i​ , ​a​l​​ ∈ G.

We find a positive result. The hybrid sequential exchange does at least as well 
as simultaneous exchange in a replicated economy. Moreover, there is a natural 

Figure 7

Notes: Suppose the six-cycle of the left panel is required to attain full efficiency, but the hospital capacity constraint 
allows only three simultaneous transplants. The hybrid exchange of the right panel attains full efficiency while 
requiring fewer agents to wait than a sequential exchange.
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relationship between a sequential exchange, where agents may be required to wait 
up to k periods, and a static matching in the k-replicated economy.

Proposition 5: Consider any static exchange in a k-replicated economy ​X​ (k)​. 
Then there exists a corresponding hybrid sequential exchange in ​X​ ∞​, the unrepli-
cated but repeated economy, where:

	 (i )	 the average number of trades in each period is ​ Δ​( ​X  ​(k)​ )​ _ k  ​ ; and

	 (ii )	 no agent waits more than k periods after giving a kidney to receive a kidney.

We give a formal proof below, but the intuition is captured in the following figures. 
Suppose we have a static exchange in a k-replicated economy. Figure 8 gives an 
example of a three-way static exchange in a three-replicated economy.

In the repeated economy, we have only one population each period. However, 
k consecutive economies are isomorphic to a k-replicated economy. Therefore, for 
any period t, we associate agent ​a​it​ in the repeated economy with agent ​a​ i​ 

tmod(k)​ in the 
k-replicated economy.

Now we can follow essentially the same procedure as in Proposition 1 to trans-
form a static exchange into a sequential exchange. Suppose in the replicated econ-
omy that agent ​a​ i​ m​ donates to agent ​a​ j​ n​. If m > n, then for each t ∈ ℤ, we have ​
a​i,tk+m​ donate to ​a​j,tk+n​. If m ≤ n, then ​a​i,tk+m​ donates to ​a​j,t(k−1)+n​. In the worst case 
(m = n) an agent must wait k periods after donating a kidney in order to receive 
a kidney.

ai
0

X(1)X(0) X(2)

aj
1 am

2

X96

ai,96

X97 X98 X99 X100 X101

aj,97 am,98 ai,99 aj,100 am,101

Figure 8

Note: A three-way exchange in a three-replicated economy.

Figure 9

Note: A three-replicated economy is isomorphic to three consecutive periods in the repeated economy.
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Proof: 
Consider any k-replicated economy ​X​ (k)​ and any maximal match μ. Let μ(​X​ (k)​) 

denote the set of agents that exchange kidneys. Now consider the unreplicated but 
repeated economy. For convenience, relabel each ​X​t​ as ​X​kr+s​,where

 	  r  = ​ ⌊ ​ t _ 
k
 ​ ⌋​,  0  ≤  s  ≤  k  −  1  and  t  =  rk  +  s.

Define a hybrid sequential exchange as follows. If μ(​a​ i​ m​) = ​a​ j​ n​, then let

f (​a​i, kr + m​)  = 

⎧
⎪
⎨
⎪
⎩

​a​j, kr + n​ m  >  n

​a​j, k(r−1)+n​    m  ≤  n.

Let f (x) = ∅ otherwise. Since μ is a well-defined exchange, f must be a  
well-defined hybrid exchange. By construction, the number of agents that exchange 
kidneys among periods {rk, rk +1, … , rk + k − 1} is equal to the number of agents 
that exchange kidneys in μ. Therefore, the average number of kidneys matched in 

any given period is ​ Δ​( ​X  ​(k)​ )​ _ k  ​ . Also, note that, in this exchange, the longest wait occurs 

when m = n, in which case the agent waits k periods to receive her kidney.

Y3 × 32 + 0 Y3 × 33 + 0

Y3 × 32 + 1 Y3 × 33 + 1

Y3 × 32 + 2 Y3 × 33 + 2

ai,96

aj,97

am,98

ai,99

aj,100

am,101

Figure 10

Note: The same three-way exchange in the static economy recreated as a hybrid exchange in 
the repeated economy.
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Section I considered exchanges where no two agents in the same period are 
matched. Here, we consider both inter- and intra-period exchanges. We find that 
such exchanges, on average, do no better.

Proposition 6: Consider a steady-state exchange in which an agent in period 
t may only donate to an agent in either period t or t − 1. If Δ many agents are 
matched each period, then there exists a static exchange in a replicated economy 
where proportion ​ Δ _ N ​ of the agents receive kidneys.

Proof: 
Look at any hybrid exchange f. Let f (​X​t​) ∈ ℘(​X​t​) denote the set of agents that 

receive a kidney in any period t. As there are infinitely many periods and the cardi-
nality of ℘(X  ) is finite, by the pigeonhole principle there must exist two periods i 
and i + j, such that f (​X​i​) = f (​X​i+j​). Now, consider the j-replicated economy ​X​ ( j)​ and 
define a static match as follows:

μ(​a​ k​ l
 ​)  = 

⎧
⎪
⎨
⎪
⎩

​a​ m​ n
 ​    if  f (​a​k,i+l​)  = ​ a​m,i+n​, 1  ≤  l  ≤  j, 1  ≤  n  ≤  j

​a​ m​ j
 ​ if  l  =  1,  and  f (​a​k,i+1​)  = ​ a​m,i​

∅ if  f (​a​k,i+l​)  =  ∅

This is a well-defined static exchange as f is well defined and f (​X​i​) = f (​X​i+j​).

IV.  Conclusion

In this short paper, we have explored the implications of relaxing the 
simultaneous-exchange constraint that has generally been imposed in the previous 
literature on kidney exchange. While there are evident incentive reasons to require 
the donor to give up her kidney no later than the associated patient receives his 
transplant, the need is less compelling for the two operations to occur at exactly the 
same time. If we permit sequential exchanges in which the donor gives up her kid-
ney in one period and the designated recipient receives a donation in a later period, 
the constraint posed by a limited number of concurrent operating rooms is relaxed 
and a greater number of beneficial transplants is possible.

For a practical implementation of this market design innovation to be successful, 
the critical ingredient is to assure donors that this is not a “Ponzi scheme” and to 
give them confidence that their designated recipients will be served.5 There are three 
aspects to the needed confidence:

•	 confidence that a compatible donor for the designated recipient will enter the 
pool with high probability;

5 A Ponzi scheme is an investment fraud that involves the payment of purported returns to existing investors 
from funds contributed by new investors.
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•	 confidence that this compatible donor will also be willing to participate in a 
sequential exchange; and

•	 confidence that this compatible donor will be matched with the designated   
recipient.

With a stationary population, all three requirements may be easily achieved with 
a sequential exchange. In reality, there is never a truly stationary population as both 
the size and the characteristics of the donor-patient pool change in each period. 
Therefore, it is reasonable to dichotomize agents into two subpopulations: agents 
who recur in each period with high probability; and agents who are comparatively 
rare. With a semi-sequential exchange, the agents that recur with a high enough 
probability may be accommodated sequentially, while exchanges involving com-
paratively rare agents are done simultaneously.

This also suggests how we can transition from a system of purely simultaneous 
exchanges to one utilizing both sequential and semi-sequential exchanges. Initially, 
a very small group of agents Y could be processed sequentially, where Y consists of 
the agent-types that are essentially guaranteed to reoccur in the next month. Over 
time, Y can be expanded until the benefits from relaxing the hospital capacity con-
straint no longer exceeds the costs associated with including an agent whose type 
may not reoccur in the next period.

The variance of the characteristics of the donor-patient pool in each period 
reduces the number of exchanges that may be handled sequentially. This sug-
gests another advantage of converting regional exchange programs into a national 
exchange program. Several papers have quantified the increase in the number of 
simultaneous exchanges that are possible when the population being matched is 
expanded (see Toulis and Parkes 2011, and Ashlagi et al. 2012). A separate advan-
tage is that a large, national exchange program reduces the variability of the popu-
lation in each period.

It is unreasonable to assume that agents will only participate in an exchange pro-
gram if they are guaranteed to receive a kidney. After all, even in a simultaneous 
exchange, agents are never guaranteed a successful transplant. Similarly, agents will 
participate in a sequential exchange so long as the probability they receive a kidney 
is high enough that the expected benefit from a successful transplant outweighs the 
cost associated with donation.

All of these confidence issues will be easier to satisfy as a greater flow of donor-
patient pairs enter the kidney exchange and as a longer history of trades develops. 
As this occurs, and as a historical database becomes available, it will be possible 
to provide donors with reliable, individualized information such as: “With 93 per-
cent probability, a live donor compatible with your designated recipient will be 
offered within one month.” Effective fallback options can also be developed: for 
example, if no compatible donor emerges within one month, the patient can be 
offered the option of jumping to the front of the cadaver queue.6 Finally, peo-
ple should have no concerns that the next generation of donor‑patient pairs will 

6 The cadaver queue is the list of patients waiting to receive a cadaver kidney. See Roth et al. (2006) for a 
detailed description of how a system of paired exchanges might interact with the cadaver queue.
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decline to participate (the usual downfall of Ponzi schemes and asset bubbles) as, 
unfortunately, the population in need of kidney transplants will not be declining 
any time soon.

One reason that sequential kidney exchange of this form has not previously been 
considered is that it may raise potential ethical issues. These include:

•	 Arranging for a patient to receive a kidney after his associated donor donates 
may introduce delay in receiving a kidney, which is harmful to the patient.

•	 Arranging for a patient to receive a kidney after his associated donor donates 
introduces the possibility that the kidney donation intended for the patient will 
fall through after his associated donor has already donated, which cannot occur 
under simultaneous exchange.

Whether the delays from sequential kidney exchange raise ethical concerns 
may depend on how one views the trade-off between relatively short delays and 
an increase in the overall number of beneficial trades. Since fewer transplants are 
possible when only simultaneous exchanges are used, limiting attention to simulta-
neous exchanges imposes another form of delay: some patients are required to wait 
for extended periods because no suitable simultaneous exchange is possible. So, in 
reality, there is a trade-off between requiring short delays of many patients or impos-
ing lengthy delays on patients who will be unable to match.

Our analysis includes consideration of hybrid exchanges (where some exchanges 
occur simultaneously, and some occur sequentially). Any concerns about delay can 
be ameliorated by retaining simultaneous exchange for the patients who would oth-
erwise face the longest waits. If the added delays are still felt to be excessive, policy-
makers would do best to increase the number of concurrent operating rooms. Still, at 
any reasonable cost of delay, it seems likely that a social planner would want some 
fraction of the exchanges to be sequential rather than simultaneous.

The possibility of a patient’s intended donor becoming unavailable, after his 
directed donor has donated, does not seem to pose any greater ethical concern 
than the current practice of “list paired donation.” In list paired donation, a donor 
who is incompatible with her directed recipient donates to a person on the cadaver 
queue; in return, the directed recipient receives priority for a cadaver kidney 
(Gentry et al. 2011). Ethicists have considered list paired donation and, subject to 
concerns about protecting the position of type O recipients on the cadaver queue, 
consider it acceptable (Ross and Woodle 2000). As suggested above, if the kid-
ney donation intended for the patient falls through after the associated donor has 
already donated and if a substitute live donor is unavailable, one alternative is to 
give the patient priority in the cadaver queue; and the ethical concerns ought to be 
possible to resolve.

Sequential kidney exchange holds some promise as an improvement upon the 
current solution to the market design problem. It does not violate incentive com-
patibility; nor does it violate the legal constraint against payment of valuable con-
sideration (other than in‑kind directed donations) for organ transplants. In short, 
for kidney exchanges, it may be better first to give and then to receive; rather than 
always to give and receive simultaneously.
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