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Efficient Procurement Auctions with Increasing Returns†
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For procuring from sellers with decreasing returns, there are known 
efficient dynamic auction formats. In this paper, we design an effi-
cient dynamic procurement auction for the case where goods are 
homogeneous and bidders have increasing returns. Our motivating 
example is the procurement of vaccines, which often exhibit large 
fixed costs and small constant marginal costs. The auctioneer names 
a price and bidders report the interval of quantities that they are will-
ing to sell at that price. The process repeats with successively lower 
prices, until the efficient outcome is discovered. We demonstrate an 
equilibrium that is efficient and generates VCG prices. (JEL D24, 
D44, F53, H57, I11, L14, L65)

The auction literature provides us with a number of prescriptions for effective 
auction design. First, truthful revelation of information is fostered by making 

bidders’ payments as independent of their own bids as possible. Second, when bid-
ders’ values are interdependent, the auction should utilize a dynamic structure that 
permits the revelation of value information during the auction. Third, at the same 
time, the auction process should avoid requesting or disclosing information that is 
unnecessary for determining the outcome. Fourth, bidder participation and desirable 
outcomes are facilitated by simple, transparent, and fast auction designs.1

For selling a single item, the English auction adheres to all of these design princi-
ples. For more general settings, these prescriptions point us toward dynamic auctions 
that iteratively converge to the Vickrey-Clarke-Groves (VCG) outcome.2 Dynamic 
implementations of the VCG mechanism in various environments have received and 
continue to receive a great deal of attention in the literature (see Demange, Gale, 

1 See, for example, the closely related discussion in the first paragraph of Ausubel (2004). 
2 See Vickrey (1961), Clarke (1971), and Groves (1973). 
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and Sotomayer 1986; Gul and Stacchetti 2000; Parkes and Ungar 2000; Ausubel 
and Milgrom 2002; Bikhchandani and Ostroy 2002, 2006; Ausubel 2004, 2006;  
de Vries, Schummer, and Vohra 2007; Mishra and Parkes 2007; and Lamy 2012).

For a general private-values environment, Mishra and Parkes (2007) construct 
a class of ascending-price combinatorial auctions that terminate at the VCG out-
come. These auctions are quite complex, implying that the auctioneer has to sacri-
fice a number of desirable properties of the English auction in order to implement 
the VCG outcome in general settings. However, simpler auction designs are known 
for more restrictive settings. For example, Demange, Gale, and Sotomayer (1986) 
develop a dynamic Vickrey auction for the unit-demand case, and Ausubel (2004) 
does the same for environments with homogeneous items and nonincreasing mar-
ginal values.

In this article, we study procurement settings with homogeneous goods. For the 
case of convex cost functions, a descending clock auction with “clinching”3 is a 
simple dynamic auction that implements the VCG outcome. However, many import-
ant procurement markets exhibit economies of scale and production limits, resulting 
in concave cost functions with capacity constraints. For such settings, we provide a 
relatively simple dynamic auction that implements the VCG outcome.

Our motivating example for studying this setting is the procurement of vaccines. 
The largest buyer of vaccines worldwide is an international organization called 
Global Alliance for Vaccines and Immunisation (GAVI), which was launched in 
2000 with the mission to increase access to immunization in poor countries. As of 
this writing in 2016, GAVI is assisting 73 low-income countries in obtaining vac-
cines, resulting in half a billion additional children being vaccinated to date. As the 
largest buyer, GAVI shapes the world vaccine market by ensuring persistent demand 
that attracts new suppliers and reduces immunization costs. UNICEF, which serves 
as a procurement agent for GAVI, is responsible for procuring hundreds of millions 
of doses of vaccines annually.4

Manufacturing vaccines is a highly specialized industry with large barriers to 
entry. New entry into the vaccine market may require making significant investments 
in R&D, performing clinical trials, obtaining regulatory approvals, and building pro-
duction facilities. It typically takes about ten years and costs more than $1 billion 
to bring a new vaccine to market. The production line for a vaccine is capable of 
producing the raw vaccine for a fixed number of doses; in addition, marginal costs 
are associated with the fill/finish process. Suppliers cannot adjust their production in 
response to sudden demand changes. Production lines of a multi-vaccine supplier are 
not fungible in the sense that the production facility for one vaccine cannot easily be 
converted to produce a different vaccine. As a result, it would typically take years for 
a manufacturer to expand its capacity and to get the required regulatory approvals.

The global vaccine market is dominated by a handful of large multinational firms, 
though smaller vaccine manufacturers from developing countries have recently 
begun to play a larger role. The fixed capital expenditures associated with R&D, 

3 A reverse version of the ascending clock auction with “clinching” from Ausubel (2004). 
4 For an overview of UNICEF vaccine procurement, see http://www.unicef.org/supply/index_vaccines.html 

(last accessed on October 11, 2016). 
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clinical trials, regulatory approvals, and plant equipment constitute a significant pro-
portion of the total production costs and are largely independent of the number of 
doses that is ultimately produced. In particular, the average cost of producing a vac-
cine is decreasing up to a predetermined maximum capacity. Typically, UNICEF’s 
demand for a particular vaccine is so large that it cannot be fulfilled by a single 
supplier. Moreover, due to concerns about supply security and future procurements, 
UNICEF appears to prefer to have multiple suppliers for a given vaccine even if the 
short-run procurement costs would have been lower with fewer suppliers.5 Given 
the available information on vaccine production, it seems appropriate to model the 
cost structure of a vaccine manufacturer as consisting of a large fixed cost and a 
small constant marginal cost, up to a predetermined capacity limit. In this article, 
we consider the more general setting of a concave cost function, again up to a pre-
determined capacity.

In a typical descending clock procurement auction, the auctioneer quotes a unit 
price and asks each bidder for its supply (i.e., its optimal quantity) at that price. 
With convex cost functions, bidders would gradually decrease their desired sup-
ply in response to the descending price, converging to an efficient market clearing. 
However, when bidders have concave cost functions and the auctioneer quotes a unit 
price, it is optimal for the bidder either to produce at its capacity limit or to produce 
nothing, and it is never optimal for the bidder to produce any intermediate quantity. 
But, then, the standard descending clock format can only discover one point on the 
cost curve—the cost associated with producing at maximum capacity—so the auc-
tioneer never learns the costs of other quantities as the price goes down.

Consider an example with three suppliers, each characterized by a cost function 
with a fixed cost, a constant marginal cost, and a capacity. The auctioneer wants to 
procure a total quantity of four of the fully divisible good, and each supplier can 
produce no more than three. The cost functions of suppliers are   c 1   (q) = 25 + q  ,   
c 2   (q) = 27 + q  , and   c 3   (q) = 24 + 3q . Due to concavity, the cost-minimizing 
assignment is a 3–1 split of the award between two suppliers, e.g., one supplier 
would produce a quantity of three and another supplier would produce a quantity 
of one. Hence, to identify the optimal split, the auctioneer needs to collect costs for 
producing one and three from each supplier.

Suppose that all suppliers bid truthfully. In a standard descending clock auction, 
a truthful bidder would offer three units (its capacity) until the bidder drops out. 
Therefore, the auctioneer would learn the suppliers’ costs for producing  q = 3  , 
but not for  q = 1 . Specifically, a standard descending auction would terminate at 
a price of ten (when the aggregate supply falls below demand) with the award for  
q = 3  going to supplier 1 and the award for  q = 1  being unassigned (see the last 
column of Table 1). Furthermore, at this point, there is no good way for the auction-
eer either to select whom to assign the  q = 1  award or to determine the correspond-
ing payment. Also, with the auction terminated at price 10, it has not been proven 
that supplier 1 should be assigned three rather than one (the auction only proved that 
supplier 1 should not be assigned zero). To summarize, standard auction designs 

5 Supply security considerations are not explicitly studied in this paper. 



4 AMErICAn ECOnOMIC JOurnAL: MICrOECOnOMICs AuGusT 2017

based upon eliciting one-point supplies are, in general, ill-suited for determining 
optimal assignments in this setting.

We propose a new bidding procedure. Given the current price, instead of asking 
which quantity a bidder prefers to supply, the auctioneer requests all quantities that 
the bidder is willing to supply. With decreasing average costs, the minimum quan-
tity that a bidder is willing to supply should gradually increase as the clock price 
decreases (while the maximum quantity is equal to the capacity, until that becomes 
unprofitable). Then the auctioneer can ask for a connected interval of quantities that 
would be profitable for the bidder to supply at a given price.

In our example, given a unit price of  p(t)  and assuming truthful bidding, supplier  
i  would be willing to supply any quantity  q  such that  p(t)q ≥  c i   (q) . For example, 
when the unit price is 26, supplier 1 is willing to supply any quantity  q ∈ [1, 3] ; 
and supplier 1’s bidding interval reduces to   [2.5, 3]   when the clock price drops to 11. 
Table 1 presents the detailed auction dynamics for this example.

Suppose that the auctioneer initializes the auction at  p( t  0  ) = 30 . Due to the 
interval bidding approach, the auctioneer learns the costs of each supplier for pro-
ducing  q = 1  by the time the price drops to 26. By the time the price drops to 10, 
the auctioneer knows that the optimal assignment is either (1, 3, 0) or (3, 0, 1): the 
current total cost of (1, 3, 0) is 56 and the current total cost of (3, 0, 1) is 57. Hence, 
the auctioneer needs to find out whether supplier 1 is willing to produce  q = 3  for 
29, which would reduce the total cost of (3, 0, 1) to 56. By allowing the price to 
drop a little further, to  9  2 _ 3    , the auctioneer confirms that the assignment (3, 0, 1) is 
indeed efficient.

The auctioneer uses the cost information generated by the interval bidding 
approach to reconstruct the suppliers’ cost functions. In general, the auctioneer 
would stop the auction before all cost information is revealed, since the efficient 

Table 1—Example with Fixed Costs and Constant Marginal Costs

supplier 1 supplier 2 supplier 3
Total costs:   c 1   (q) = 25 + q    c 2   (q) = 27 + q    c 3   (q) = 24 + 3q  

Lowest profitable
 quantity given  p(t) :

  q 1   (t) =   25 _______ 
p(t) − 1      q 2   (t) =   27 _______ 

p(t) − 1      q 3   (t) =   24 _______ 
p(t) − 3    

Bidding intervals Standard
Price  p(t) (new approach) agg. supply

 p( t 0  ) = 30   s 1   =  [  
25 __ 
29

   , 3]    s 2   =  [  
27 __ 
29

   , 3]    s 3   =  [  
24 __ 
27

   , 3]  9

 p( t 1  ) = 28   s 1   =  [  
25 __ 
27

   , 3]    s 2   =  [1, 3]    s 3   =  [  
24 __ 
25

   , 3]  9

 p( t 2  ) = 27   s 1   =  [  
25 __ 
26

   , 3]    s 2   =  [1   1 __ 
26

   , 3]    s 3   =  [1, 3]  9

 p( t 3  ) = 26   s 1   =  [1, 3]    s 2   =  [1   2 __ 
25

   , 3]    s 3   =  [1   1 __ 
23

   , 3]  9

… … … … …

 p( t 4  ) = 11   s 1   =  [2   1 __ 
2
   , 3]    s 2   =  [2   7 __ 

10
   , 3]    s 3   =  [   ]   6

 p( t 5  ) = 10   s 1   =  [2   7 __ 
9
   , 3]    s 2   =  [ ]    s 3   =  [ ]  3

 p( t 6  ) = 9   2 __ 
3
     s 1   =  [2   23 __ 

26
   , 3]    s 2   =  [ ]    s 3   =  [ ]  (N/A)
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assignment and corresponding payments can be found using only partial cost infor-
mation (due to the concavity assumption). The efficient assignment and the pay-
ments are calculated by solving the standard winner determination problems using 
the partially reconstructed cost functions as inputs.

The proposed auction design has a number of desirable properties. The auction 
uses linear and anonymous prices to elicit costs—making it simple, intuitive, and 
fast. At each price, bidders reveal cost information about quantities that are no lon-
ger profitable. If the auctioneer discloses this information to bidders, the format can 
potentially yield price discovery, reducing bidders’ cost uncertainties (if costs are 
interdependent). At the same time, winning bidders in general do not reveal their 
costs for the awarded quantities. Therefore, the format strikes a balance between 
price discovery and privacy preservation. Finally, if the auctioneer uses the VCG 
outcome, then a fully efficient assignment is supported as an equilibrium.

Our analysis is strongly influenced by the general dynamic implementation of 
the VCG mechanism from Mishra and Parkes (2007) and the follow-up analysis in 
Lamy (2012). However, we do not explicitly use their concept of universal compet-
itive equilibrium (UCE) price. For our setting, finding a UCE price vector is equiv-
alent to partially reconstructing the cost functions of the suppliers so that the VCG 
outcome can be found. Other related articles include Mishra and Parkes (2009) and 
Mishra and Veeramani (2007), who develop Vickrey-Dutch auctions and compare 
their privacy preservation properties with their standard “English-like” counterparts.

The article is organized as follows. Section I provides a model of the environ-
ment, and Section II formally describes the auction procedure with interval bidding. 
The main results are established in Section III. Several implementation issues are 
discussed in Section IV. Section V presents a detailed example that illustrates the 
main elements of the new bidding procedure. Section VI concludes. Appendix A 
contains results pertaining to the implementation of core outcomes. Most of the 
proofs are relegated to Appendix B.

I. Model

An auctioneer wishes to procure  D  units of an indivisible homogeneous good 
from a set of suppliers  n = {1, 2, … , n} .6 Supplier  i  can produce any quantity 
from the set   s i   = {0, 1, … ,    

_
 s    i   } , where     

_
 s    i    is the maximum production capacity of 

supplier  i . Production capabilities of supplier  i  are fully characterized by a cost func-
tion   c i   (q), q ∈  s i   . A supplier’s cost for producing zero units is zero,   c i   (0) = 0 .  
We assume that all suppliers have increasing cost functions with nonincreasing 
marginal costs (e.g., concave), i.e.,   c i   (q) −  c i   (q − 1) ≥  c i   (q + 1) −  c i   (q)  for all  
q ∈ {1, … ,    

_
 s    i   − 1}  and for all  i ∈ n . Supplier  i  realizes a net payoff   p i   −  c i   ( q i  )  

when it receives a payment   p i    in exchange for supplying   q i    units of the good.
An economy that includes only suppliers from set  M ⊆ n  is denoted as  E(M  ) . 

Let   n −i   = n \{i}  denote the set of all suppliers in  n  excluding supplier  i . The main 
economy is  E(n  )  and the marginal economy for supplier  i  is  E( n −i  ) .

6 The assumption of indivisible goods is purely for expositional convenience and general usefulness for practical 
auction designs. With divisible goods, an appropriately modified auction design has the same properties. 
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It is assumed that the auctioneer has an alternative source to procure any quantity 
of the good at a per unit cost of    

_
 c   .7 This assumption ensures that the auctioneer can 

always procure  D  units of the good in any economy  E(M  )  even if the total maxi-
mum capacity of suppliers in  M  is not sufficient to meet the full demand. For purely 
expositional purposes, we assume that   c i   (q) ≤   _ c  q  for all  q ∈  s i    and all  i ∈ n .8

We say that assignment  x = ( x 1  , … ,  x n  )  is feasible for the economy  E(M  )  if   
x i   ∈  s i    for all  i ∈ M  ,   x i   = 0  for all  i ∉ M , and   ∑ M        x i   ≤ D . Denote  X(M  )  a set 
of feasible assignments for the economy  E(M  ) .

Assignment  x  is efficient for the economy  E(M  )  if it is a feasible assignment that 
minimizes the total cost of producing  D  units of the good:

(1)  TC(M  ) =   min  
x ∈ X(M  )

  
 
    [ ∑ 

M
      c i   ( x i  ) +   

_
 c   ⋅ (D −  ∑ 

M
      x i  )]  .

Proposition 1 shows that efficient assignments in this environment tend to be 
asymmetric, allocating either their maximum capacity or zero to the majority of 
suppliers.

PROPOSITION 1: For any economy  E(M  )  ,  M ⊆ n  , there exists an efficient assign-
ment  x = ( x 1  , … ,  x n  )  such that at most one supplier  i ∈ M  is assigned a positive 
quantity that is strictly less than its capacity, i.e.,  0 <  x i   <    

_
 s    i    .

A Vickrey outcome is an assignment  x = ( x 1  , … ,  x n  )  and a payment vector   
p   V  (x) = (  p  1  V  (x), … ,  p  n  V  (x))  such that  x  is an efficient assignment for  E(n  )  and   
p  i  V  (x) =  c i   ( x i  ) + [TC( n −i  ) − TC(n  )] . The Vickrey payment to supplier  i  consists 
of (i) the cost compensation for producing   x i    units and (ii) a nonnegative bonus 
that reflects the social value of supplier  i  to the main economy. The corresponding 
Vickrey payoff of supplier  i  is   π  i  V  =  p  i  V  (x) −  c i   ( x i  ) = TC( n −i  ) − TC(n  ) ≥ 0 .

II. Auction Procedure with Interval Bidding

Our auction procedure utilizes a standard descending clock price initialized at  
p(0) =   

_
 c   . Let  p(t)  denote a continuous descending price path on  [0, T  ] , where  T  is 

the termination time at which one of the auction closing conditions (specified later) 
is met.

The auctioneer has several ways to elicit cost information from bidders using the 
interval bidding approach. The most natural one is to ask suppliers to name all pos-
sible production levels that they would be willing to provide in exchange for a per 
unit payment  p(t) . Then supplier  i , who at time  t  excluded a previously acceptable 
quantity  q  from its report, has just revealed its cost for  q  to be  p(t)q . We refer to this 
approach as average cost elicitation.

7 This assumption is equivalent to having a reserve price of    
_
 c    , the maximum price the auctioneer is willing to 

pay per unit of the good. 
8 If   c i   (q) >   _ c  q  for some  q  of supplier  i  , this cost information is irrelevant for the auctioneer since it is not 

efficient to assign quantity  q  to supplier  i  in any economy. 
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Under the average cost elicitation approach, supplier  i  is said to bid 
according to cost function  c( · )  on set  s  if the set of acceptable quantities is   
s i   (t) = {q ∈ s : c(q) < p(t)q}  at every time  t ∈ [0, T  ] ; and supplier  i  is said to 
bid truthfully if it bids according to its true concave cost function   c i   ( · )  on its true 
feasible set   s i    . Throughout this section, we assume that all suppliers bid truthfully.

LEMMA 1: If supplier  i  bids truthfully according to its concave cost function   c i   ( · ) ,  
then for all  t, t ′ ∈ [0, T  ] :

 (a)   s i   (t)  is a connected set;

 (b)   s i   (t ′  ) ⊆  s i   (t)  for all  t ′ > t ;

 (c) if   s i   (t)  is nonempty, then     
_
 s    i   ∈  s i   (t) .

PROOF: 
Concavity of   c i   ( · )  implies nonincreasing average costs. Given the descending 

clock price trajectory  p(t) , a supplier who is bidding according to a concave cost 
function would submit an interval that includes all quantities from its feasible set 
that are above some threshold level, trivially implying properties (a)–(c). ∎

A. reconstructing Cost Functions

The auctioneer infers the maximum capacity of supplier  i  ,     
_
 s   i    , by noting its 

highest acceptable quantity at  t = 0 . Let   q i   (t)  denote the highest unaccept-
able quantity of supplier  i  in set   s i    at time  t . For any  q ≤  q i   (t) , denote   t i   (q)  
= {min t ′ ∈ [0, t] : q ∉  s i   (t ′  )}  , the time supplier  i  removed quantity  q  from its 
bidding interval and    c ̃   i   (q) = p( t i   (q))q  the associated revealed cost for  q  units. The 
revealed cost for producing zero units is set to zero,    c ̃   i   (0) = 0 .

At time  t  , the revealed marginal cost for the highest unacceptable unit   q i   (t)  is 
 m  c  i  −  (t) =   c ̃   i   ( q i   (t)) −   c ̃   i   ( q i   (t) − 1) . Because of the concavity of the cost function, 
the auctioneer can infer that the marginal cost of supplier  i  for the lowest accept-
able unit,   q i   (t) + 1  , is bounded from above by  m c  i  −  (t) . Furthermore, since sup-
plier  i  is willing to supply   q i   (t) + 1  units at price  p(t)  per unit, the auctioneer can 
infer that   c i   ( q i   (t) + 1) ≤ p(t)[ q i   (t) + 1]  , and thus the marginal cost of supplier  
i  for the lowest acceptable unit,   q i   (t) + 1  , is also bounded from above by  m  c  i  +  (t)  
= p(t)[ q i   (t) + 1] −  c ̃  ( q i   (t)) . We denote the lower of these two upper bounds on 
the revealed marginal cost for the lowest acceptable unit of supplier  i  at time  t  as  
 m  c i   (t) = min {m  c  i  +  (t), m  c  i  −  (t)} .

The auctioneer approximates the cost function for supplier  i  as follows:

(2)    c ˆ   i   (q, t) =  { 
  c ̃   i   (q)

  
q ≤  q i   (t)

     
  c ̃   i   ( q i   (t)) + m c i   (t)[q −  q i   (t)]

  
 q i   (t) < q ≤    _ s    i  

      .
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The approximation error at time  t  for supplier  i  and quantity  q  is given by

(3)   δ i   (q, t) =   c ˆ   i   (q, t) −  c i   (q) .

The approximation process is illustrated in Figure 1. Suppose that at time  t  , sup-
plier  i  drops quantity  q  from its bidding interval (e.g.,   q i   (t) = q ) and continues to 
include quantity   q i   (t) + 1  in its bidding interval until time  t ′ , where  t <  t   ∗  < t ′   
and   t   ∗   is determined by the equation  m  c  i  −  ( t   ∗ ) = m  c  i  +  ( t   ∗ ) . Note that at time  t  , sup-
plier  i  revealed its cost for quantity   q i   (t)  to be    c ̃   i   ( q i   (t)) = p(t) q i   (t)  and the associ-
ated marginal cost to be  m  c  i  −  (t)  (the slope of segment  AB ).

If supplier  i  were to drop   q i   (t) + 1  at time   t 1   ∈ (t,  t   ∗ )  , the implied cost of   
q i   (t) + 1  would be too high to produce a concave cost function (segment  BC  ).  
To maintain the concave approximation, the auctioneer approximates costs for   
q i   (t) + 1  at time   t 1    to be    c ̃   i   ( q i   (t)) + m  c  i  −  ( t 1  )  (segment  BD ). Note that a supplier 
who bids truthfully according to a concave cost function would never drop quantity   
q i   (t) + 1  from its bidding interval on  (t,  t   ∗ ) .9 However, if supplier  i  were to drop 
this quantity at   t 2   ∈ [ t   ∗ , t ′  ) , the implied cost of   q i   (t) + 1  would be fully consistent 
with a concave cost function and the auctioneer would approximate the cost for   
q i   (t) + 1  to be    c ̃   i   ( q i   (t)) + m  c  i  +  ( t  2  )  (segment  BE   ).

Lemma 2 shows that    c ˆ   i   ( ·, t)  is a well-behaved approximation of the cost func-
tion   c i   ( · ) . It weakly converges toward   c i   ( · )  from above and maintains the concave 
shape at all times. Also both the approximation error   δ i   ( ·, t)  and the reduction in the 
approximation error over time are monotonic functions of quantity.

9 This property is used to motivate the activity rule AR2 in Proposition 3. 

Figure 1. Cost Approximation Using the Interval Bidding Approach

note: Points A, B, and D lie on a straight line.

Costs

A

B

C

D

E   c ̃   i   (  q  i   (t))

   c ̃   i   (  q  i   (t) − 1)

  q  i   (t) − 1   q q  i   (t) + 1  q  i   (t)

p(t)q

p(  t  1   )q

p(  t   ∗  )q

p(  t  2   )q

t <    t  1      <  t   ∗   <    t  2   
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LEMMA 2: If supplier  i  bids truthfully according to its concave cost function   c i   ( · )  , 
then for all  q,  q ′   ∈  s i    and all  t, t ′ ∈ [0, T  ] :

 (a)    c ˆ   i   (q, t) ≥  c i   (q)  for all  q ∈  s i    and    c ˆ   i   (q, t) =  c i   (q)  for all  q ≤  q i   (t) ;

 (b)    c ˆ   i   (q, t)  is increasing and concave in  q  and weakly decreasing in  t ;

 (c)   δ i   (q, t)  is weakly increasing in  q ;

 (d) for  t ′ ≥ t  and  q′ ≥ q 

     δ i   (q, t) −  δ i   (q, t ′  ) ≤  δ i   (q′, t) −  δ i   (q′, t ′  ) .

B. Closing rule and Auction Outcome

Given the current clock price  p(t) , supplier  i  exits the auction when it is no longer 
profitable to supply its maximum capacity     

_
 s    i    . A supplier who wishes to exit sub-

mits an empty bidding interval   s i   (t) = {   }  that implies that   q i   (t) =    
_
 s    i    . Denote by  

A(M, t) = {i ∈ M :  q i   (t) <    _ s    i  }  the set of active suppliers from set  M ⊆ n  who 
are still willing to supply their maximum capacity at time  t  , and denote  I(M, t)  a 
complimentary set of inactive suppliers from set  M .

Utilizing current estimates of the cost functions    c ˆ   i   ( ·, t)  for all suppliers in  
M  , the auctioneer finds a tentative assignment for economy  E(M)  denoted as  
  x ˆ  (M, t) = (  x ˆ   1   (M, t), … ,   x ˆ   n   (M, t))  by minimizing the total cost of procurement:

(4)    ̂  TC  (M, t) =   min  
x∈X(M)

  
 
    [ ∑ 

M
       c ˆ   i   ( x i   , t) +   _ c    (D −  ∑ 

M
      x i  ) ]  .

If there are several assignments that minimize (4), the auctioneer selects the one that 
maximizes the total number of units assigned to active suppliers in  A(M, t) .

An aggregate supply is traditionally defined as the sum of quantities desired by 
suppliers at a given price. In our setting, the desired quantity of each supplier is 
either its maximum capacity or zero, resulting in a very lumpy aggregate supply that 
in general does not provide enough information to make the decision about closing 
the auction. Instead, we introduce an alternative definition of the aggregate supply 
that is suitable for this setting. Let  As(M, t)  be the aggregate supply for economy  
E(M)  at time  t  calculated as the sum of (1) the maximum capacities of active suppli-
ers in  A(M, t) ;10 (2) the tentative assignments for inactive suppliers in  I(M, t) ; and 
(3) the units procured from the alternative source (if any):

(5)  As(M, t) =   ∑ 
A(M, t)

       
_
 s    i   +   ∑ 

I(M, t)
      x ˆ   i   (M, t) +  [D −  ∑ 

M
       x ˆ   i   (M, t)]  .

10 This term is the usual aggregate supply since all active bidders desire their maximum capacity at  p(t) . 
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The rationale for the aggregate supply defined in (5) is simple. Aggregate supply 
at  p(t)  should reflect the current level of competition between all suppliers. In a 
setting with concave cost functions, sometimes an inactive supplier can create com-
petition for active suppliers due to a better fit. The aggregate supply should account 
for such competition; and the second term in (5) reflects such competition from 
inactive suppliers. Lemma 3 below summarizes several properties of the aggregate 
supply  As(M, t) .

LEMMA 3: If all suppliers bid truthfully according to their concave cost functions, 
then for any  M ⊆ n  and for all  t ∈ [0, T  ] :

 (a)  As(M, t) = D +  ∑ A(M, t)       [   
_
 s    i   −   x ˆ   i   (M, t)] ;

 (b)  As(M, t) ≥ D ;

 (c) if  As(M, t) = D , then  As(M, t ′  ) = D  for all  t ′ ≥ t ;

 (d) if    ∑ A(M, t)          
_
 s    i   = D , then  As(M, t) = D .

According to property (a) of Lemma 3, aggregate supply for economy  E(M  )  
equals demand,  As(M, t) = D  , when all actively bidding suppliers in  A(M, t)  have 
been assigned their maximum capacities in the tentative assignment   x ˆ  (M, t) . We say 
that economy  E(M  )  is cleared at  t  if its aggregate supply  As(M, t)  equals demand  D .

The traditional Walrasian notion of market clearing might also apply here—by 
property (d), if at any time  t  , the maximum supply of active suppliers in  A(M, t)  
equals demand  D  , then  As(M, t) = D  and economy  E(M  )  is cleared. However, 
the existence of Walrasian clearing price is not guaranteed in our environment with 
concave cost functions.

In Proposition 2, we prove that clearing an economy is equivalent to finding an 
efficient assignment for this economy.

PROPOSITION 2: If all suppliers bid truthfully according to their concave cost 
functions and economy  E(M  )  clears at time  t  , the tentative assignment   x ˆ  (M, t)  is an 
efficient assignment for  E(M  )  and

(6)    ̂  TC  (M, t) = TC(M  ) +   ∑ 
A(M, t)

     δ i   (  x ˆ   i   (M, t), t) .

The setting with concave costs permits bidder complementarities and, as a result, 
the aggregate supply  As(M, t)  may be nonmonotonic in  t .11 Note that potential non-
monotonicity of the aggregate supply does not affect clearing—by property (c) of 
Lemma 3, once an economy  E(M  )  is cleared ( As(M, t) = D ), it stays cleared until 
the end.

11 An example of nonmonotonic aggregate supply is included with the proof for Lemma 3. 
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The aggregate supply  As(M, t)  can also be nonmonotonic in  M  , so the main 
economy  E(n  )  might sometimes clear before some of its marginal economies.12 
To recover the Vickrey outcome, the auctioneer needs to know efficient assignments 
for the main economy and for all marginal economies. Hence, the auctioneer must 
continue to collect information about cost functions until the main economy and all 
marginal economies clear.13 For supplier  i  , define a tentative Vickrey payment at 
time  t  for quantity  q  as follows:

(7)    p ˆ    i  V  (q, t) =   c ˆ   i   (q, t) +  [  ̂  TC  ( n −i   , t) −   ̂  TC  (n, t)]  .

The first set of auction closing rules is as follows: 

Closing Rule 1: The auctioneer stops the clock price  (T := t)  once all economies 
in the set  {E(n  ), E( n −1  ), … , E( n −n  )}  have been cleared. supplier  i  is awarded 
its tentative allocation for the main economy   x i   =   x ˆ   i   (n, T  )  and receives payment  
   p ˆ    i  V  ( x i   , T  ) .

III. Main Results

THEOREM 1: If all suppliers bid truthfully according to their concave cost func-
tions, the interval bidding auction procedure with Closing rule 1 implements the 
Vickrey outcome.

PROOF: 
By Proposition 2,  x =  x ˆ  (n, T  )  is an efficient assignment for  E(n  )  and  

 x′ =  x ˆ   ( n −i   , T  )  is an efficient assignment for  E( n −i  ) . Further, if bidder  j  is active 
at time  T  , then   x j   =  x  j  ′   =    

_
 s    j    . The tentative Vickrey payment of bidder  i  equals its 

Vickrey payment since

    p ˆ    i  V  ( x i   , T  ) =   c ˆ   i   ( x i   , T  ) +  [  ̂  TC   ( n −i   , T  ) −   ̂  TC   (n, T  )] 

 =   c ˆ   i   ( x i   , T  ) + [TC ( n −i  ) − TC(n  )] −  δ i   ( x i   , T  )

 =  c i   ( x i  ) + [TC ( n −i  ) − TC(n  )] =  p  i  V  (x) . ∎

So far we have been assuming that all suppliers bid truthfully. When the Vickrey 
outcome is implemented through a direct revelation mechanism, it is weakly dom-
inant for suppliers to report their true costs. A dynamic implementation of the 
Vickrey outcome, such as ours, should preserve good incentives for suppliers pro-
vided they are sufficiently constrained in their action space at each stage of the 
dynamic game—a requirement that each supplier bids according to some increasing 

12 For example,  As(n,  t 4  ) = 6  and  As( n −4  ,  t 4  ) = 8  in the illustrative example used in Section V. 
13 In general, once the main economy is cleared, the auctioneer needs additional cost information only from a 

subset of active bidders. It is possible to modify our auction procedure to minimize unnecessary cost elicitation. 
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concave cost function. This requirement can be enforced by constraining bidders 
with appropriate activity rules.

PROPOSITION 3: supplier  i  bids according to an increasing concave cost function 
if and only if its bidding interval   s i   (t) = {   s _    i   (t), … ,    

_
 s    i   (t)}  is constrained by the 

activity rules AR1–AR3: 

AR1:      s _    i   (t)  is weakly increasing in  t  and     
_
 s    i   (t) =    

_
 s    i   (0)  for all  t  such that  

  s i   (t) ≠ {  } ; 

AR2:  supplier  i  is not allowed to increase its     s _    i   (t)  when  m  c  i  +  (t) > m  c  i  −  (t) ;14 

AR3:  supplier  i  becomes inactive (  s i   (t) = {  } ) at time  t  if  p(t)   s _    i   (t) =   c ̃   i   ( q i   (t)) .

Proposition 3 provides a complete characterization of bidding in accordance with 
an increasing concave function at all times. Therefore, AR1–AR3 together form 
the strictest set of activity rules that always permit truthful bidding in our setting. 
Intuitively, AR1 ensures that supplier  i  bids according to a cost function with nonin-
creasing average costs, and AR2 ensures that this cost function is concave.15 Finally, 
AR3 ensures that the underlying cost function is nondecreasing. Additionally, AR3 
ensures that supplier  i  will be inactive by the time  p(t) = 0 , so the auction cannot 
run indefinitely.

The truthful bidding assumption used in Lemmas 1–3 is made solely for exposi-
tional convenience. All lemmas (with appropriate changes to notation) stay true and 
the interval bidding auction procedure is well-defined as long as all suppliers bid 
according to some concave cost functions, i.e., when their bidding is constrained by 
AR1–AR3. However, the truthful bidding assumption is necessary for Proposition 2 
and Theorem 1. The next theorem provides a game-theoretic justification for this 
assumption. Note that ex post equilibrium is the standard solution concept in the 
literature on dynamic implementations of the VCG mechanism.16

THEOREM 2: If all suppliers have concave cost functions and their bidding is con-
strained by activity rules AR1–AR3, then truthful bidding by all suppliers is an ex 
post equilibrium.

PROOF: 
Suppose that all suppliers in   n −i    bid truthfully. By Proposition 3, any devia-

tion by supplier  i  from its true cost function   c i   ( · )  is equivalent to truthful bidding 

14 If supplier  i  wants to increase its     s _   i   (t) by more than one unit at  p(t)  ,     s _    i   (t)  is increased in one-unit increments 
provided that AR2 stays satisfied after each increase (since both  m  c  i  +  (t)  and  m  c  i  −  (t)  are updated after each increase 
in     s _    i   (t) ). 

15 See Figure 1, its surrounding text, and footnote 9 for the intuition regarding AR2. 
16 See Bikhchandani and Ostroy (2006); de Vries, Schummer, and Vohra (2007); and Mishra and Parkes (2007). 

Several papers have used a stronger ex post perfect equilibrium concept. However, they either established the equi-
librium result for auction procedures that did not employ activity rules (see Gul and Stacchetti 2000 and Ausubel 
2006) or for simpler settings where bidding as close as possible to truthfully can be argued to be the best response 
at every stage of the auction (see Ausubel 2004). 
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 according to some other concave cost function   c  i  ′   ( · ) . By Theorem 1, the outcome 
of the interval bidding auction in that case would correspond to an outcome of the 
VCG mechanism when the submitted cost functions are  { c  i  ′   ( · ),  c −i   ( · )} . But the 
VCG mechanism is strategy-proof, and so supplier  i  ’s best response is to bid truth-
fully according to   c i   ( · ) . ∎

Continuing the clock auction after the main economy has been cleared can poten-
tially run into some problems in applications. If bidders are aware that the efficient 
allocation has been identified and cannot be altered, their incentives can be compro-
mised.17 Next, we study the properties of an auction procedure with interval bidding 
that stops collecting information once the main economy is cleared. 

Closing Rule 2: The auctioneer stops the clock price  (T := t)  once the main 
economy  E(n  )  has been cleared. supplier  i  is awarded its tentative allocation for 
the main economy   x i   =   x ˆ   i   (n, T  )  and receives payment    p ˆ    i  V  ( x i   , T  ) .

THEOREM 3: If all suppliers bid truthfully according to their concave cost func-
tions, the interval bidding auction procedure with Closing rule 2 implements an 
efficient assignment  x =  x ˆ   (n, T  )  and payments    p ˆ    i  V  ( x i   , T  )  such that:

(8)   c i   ( x i  ) ≤   p ˆ    i  V  ( x i   , T  ) ≤  p  i  V  (x) for all i ∈ n. 

Theorem 3 shows that stopping the auction when the main economy is cleared is 
a viable alternative—when using current cost approximations to determine Vickrey 
payments, the auctioneer neither underpays suppliers nor overcompensates them. 
However, the auctioneer risks paying too little to suppliers, potentially compromis-
ing their incentives for truthful revelation of their costs.

We finish this section by highlighting a curious property of the interval bidding 
procedure. Mishra and Parkes (2007) show that stopping the auction once the main 
economy is cleared (e.g., Closing Rule 2) is sufficient to implement a Vickrey out-
come when the underlying value/cost functions satisfy the well-known “bidders are 
substitutes” condition. Intuitively, bidders are substitutes when their values/costs 
are sufficiently similar to each other. To be more specific, in our setting, suppliers 
are substitutes (SAS) if

(9)  TC(n/M  ) − TC (n  ) ≥   ∑ 
i∈M

    [TC (n/i) − TC (n  )] for all M ⊆ n .

Proposition 4 below demonstrates that the SAS condition is no longer sufficient for 
the interval bidding procedure to produce the same result. The key difference that is 
responsible for this limitation is the way in which approximations of values/costs 
are constructed under the interval bidding procedure.18

17 For example, bidders can deviate from truthful bidding in order to reduce payments made by the auctioneer 
to their competitors. 

18 Most of the dynamic combinatorial auction literature, including Mishra and Parkes (2007), uses the semi- 
truthful approximations. The approximation of the cost function   c ˆ   ( ·, t)  utilized by the interval bidding  procedure 
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PROPOSITION 4: If suppliers are substitutes (sAs), the interval bidding auction 
procedure with Closing rule 2 in general does not yield a Vickrey outcome.

PROOF: 
The proof is by an example with  D = 4  and three suppliers that is provided in 

Table 2. It can be verified that cost functions satisfy the SAS condition. The main 
economy clears at   t 1    when the clock price equals  p( t 1  ) = 16 . However, the tentative  
Vickrey payments for Supplier 1 is equal to  36 , which is lower than its actual Vickrey 
payment of  38  (note that  As( n −1  ,  t 1  ) = As( n −2  ,  t 1  ) = 5 > 4 = As(n,  t 1  ) ). ∎

A detailed example illustrating the mechanics of the auction with interval bidding 
is provided in Section V. Results on implementing core outcomes using the interval 
bidding procedure can be found in Appendix A.

IV. Implementing the Interval Bidding Auction

In this section, we discuss a few issues related to implementing the auction with 
interval bidding.

A. Privacy Preservation

Dynamic auctions are favored over sealed-bid ones for several reasons. One of 
them is “privacy preservation”—the ability to determine an optimal outcome while 
relying only on partial information about suppliers’ costs. The notion of privacy 
preservation is trivial for a single-item English procurement auction: a winner only 
reveals that its cost is lower than the lowest cost among its rivals. For multiple 
items, the meaning of privacy preservation is unclear—which part of its cost func-
tion would a winner like to keep private?

is not semi-truthful. Stated using our terms, an approximation of the cost function   c ˆ   ( ·, t)  is semi-truthful if   c ˆ  (q, t) 
= min {  

_
 c   q, c(q) + α(t)}  for all  q ∈  s i    and all  t ∈ [0, T  ] . 

Table 2—Proof by Example for Proposition 4 ( D = 4 )

supplier 1 supplier 2 supplier 3

Costs:   c 1   = (20, 30)   c 2   = (20, 30)   c 3   = (28, 42, 48) 

Efficient assignment: 2 2 0
Vickrey payments: 38 38 0

p(0) = 30   s 1   = {1, 2}   s 2   = {1, 2}   s 3   = {1, 2, 3} 
   c ˆ   1   = (30, 60)    c ˆ   2   = (30, 60)    c ˆ   3   = (30, 60, 90) 
   p ˆ    1  V  (2) = 60    p ˆ    2  V  (2) = 60    p ˆ    3  V  (3) = 90 

 p( t 1  ) = 16    s 1   = {2}   s 2   = {2}   s 3   = {  } 
efficiency proven    c ˆ   1   = (20, 32)    c ˆ   2   = (20, 32)    c ˆ   3   = (28, 42, 48) 

   p ˆ    1  V  (2) = 36    p ˆ    2  V  (2) = 36    p ˆ    3  V  (0) = 0 

note:   c 1    = (20, 30)  indicates that supplier 1 can produce 1 unit of the good at a cost of 20, 
and 2 units of the good at a cost of 30.
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Under the interval bidding procedure, suppliers start to reveal their cost functions 
from low quantities toward the high quantities. Then, if the auction stops without 
fully revealing the cost function of a given supplier, this supplier wins its maximum 
quantity while revealing its costs only for low quantities. Hence, the interval bidding 
approach preserves private cost information for quantities closest to the suppliers’ 
winnings.

The interval bidding procedure can be sometimes excessive in terms of revealing 
cost information: winners can end up revealing more information than is necessary 
to establish their winnings.19 This is a result of using a simple elicitation process 
based on anonymous and linear price path. It is possible to reduce the excess elic-
itation of unrelated information via simple changes to the design that would allow 
stopping the auction for one set of suppliers and continuing it for others.

B. Activity rules

Activity rules AR1–AR3 from Proposition 3 are needed to ensure that all sup-
pliers bid according to acceptable cost functions. AR2 can be somewhat counter 
intuitive: as the clock price descends, a supplier can be precluded from changing its 
bidding interval until the clock price catches up with the current cost approximation 
of its cost function. This is a natural consequence of using average cost elicitation 
to reconstruct a cost function with nonincreasing marginal costs. Average costs are 
higher than marginal costs for concave cost functions; therefore, average costs are 
revealed at a higher clock price.20

One can consider using marginal cost elicitation instead of average cost elicita-
tion to relax the need for AR2. Under marginal cost elicitation, supplier  i  reduces its 
bidding interval when the marginal cost of its current lowest acceptable alternative 
equals to the current clock price, i.e., when   c i   ( q i   (t) + 1) −  c i   ( q i   (t)) = p(t) .

The marginal approach is sufficiently similar to the average approach that the 
majority of the results in the paper continue to hold.21 However, relying on marginal 
elicitation in the environment with nonincreasing marginal costs is ill-founded. The 
marginal approach works very well when the marginal costs should be “equalized” 
across different winners at the efficient assignment, e.g., when cost functions are 
convex. But there is no value in trying to equalize marginal costs across suppliers 
when the efficient assignment does not satisfy this property (see Proposition 1). In 
comparison, the average cost elicitation identifies suppliers who can produce their 
maximum capacities at the lowest average costs, which is the relevant information 
for finding an efficient assignment.

19 The interval bidding procedure violates the minimality property advocated in Lamy (2012) for dynamic 
auctions. 

20 Consider a supplier with a cost function  c(1) = 10, c(2) = 14 . The marginal cost for the second unit is 
four, whereas the average cost for producing two units is seven. 

21 There are a few exceptions. For example, property (d) in Lemma 3 does not hold for the marginal approach 
since it is not guaranteed that an active supplier from  A(n, t)  would want to supply its maximum capacity at the 
current price. 
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C. Information Policy

It is common in dynamic auctions to provide bidders with a current aggregate 
measure of competition. If needed, the auctioneer can report aggregate supply  
As(M, t)  , as defined in (5), to suppliers so they can track the progress of the auction.

When utilizing Closing Rule 2, the public reporting of  As(n, t)  does not cause 
any concerns. In contrast, when utilizing Closing Rule 1, public reporting of  
As(n, t)  may be problematic since  As(M, t)  can be nonmonotonic in  M . If some 
marginal economies have not been cleared by the time  As(n, t) = D , suppliers 
will immediately realize that their future bids have no effect on their payoffs, com-
promising their incentives. A reasonable alternative in this case is to report the max-
imum aggregate supply across the main economy and all marginal economies, i.e.,  
max {As(n, t), As( n −1  , t), … , As( n −n   , t)}  , instead of  As(n, t) .

Nonmonotonicity of  As(M, t)  in  t  can be somewhat inconvenient as well, but it is 
not critical for the informational purposes. Possible increases in  As(M, t)  indicate 
that there exist bidder complementarities between active and inactive suppliers.

D. Dynamic Vickrey Pricing

Another advantage of dynamic auctions over the sealed-bid alternatives is their 
ability to provide information about prospective winnings and payments to each bid-
der as the auction progresses. For auctions that implement Vickrey outcomes, pro-
viding information about bidders’ tentative payments is especially important since 
in general, the clock price is a misleading indicator of the per unit final payment.22

For our auction design, a natural feedback would be to report the suppliers’ tenta-
tive assignments and payments that are calculated using the current approximations 
of the cost functions. This approach works for inactive suppliers, but they are no 
longer bidding in the auction. At the same time, active suppliers might be frustrated 
since not all of them can be assigned their maximum capacities until the main econ-
omy has been cleared.

A less confusing approach would be to report payments for     
_
 s    i    for each active 

supplier in  A(n, t) . Using the current cost functions, for each active supplier  i  , the 
auctioneer solves for (i)    ̂  TC  ( n −i   , t) ; and (ii)    ̂  TC  (n, t)  with the extra constraint 
that   x i   =    

_
 s    i    . A tentative payment for     

_
 s    i    for supplier  i  is then given by    c ˆ   i   (   

_
 s    i   , t) +  

[  ̂  TC  ( n −i   , t) −   ̂  TC  (n, t)] .23 Some caution is needed when providing payment infor-
mation to bidders since it might reveal additional information to suppliers.

22 In general, the per unit payment to a supplier is higher than the final clock price  p(T  ) , but the opposite 
relationship is possible in certain scenarios. However, for truthful suppliers, all payments are always individually 
rational (see Theorems 1 and 3). Situations when the clock price  p(T  )  overestimates the final payment (in per unit 
terms) are possible due to the concavity restriction placed on the current cost approximation    c ˆ   i   ( ·, t) . Enforcing 
concavity results in the most precise approximation of true costs that frequently outpaces the speed of the falling 
clock price. Due to superior precision, it is possible to construct specific examples where the auctioneer learns all 
required information too early for the clock price to reach a low enough level to bound all payments from below. 

23 It is possible that the current tentative payment for     
_
 s    i    is less than the current reported cost    c ˆ   i   (   

_
 s    i   , t) . This can 

happen when    x ˆ   i   (n, t) <    
_
 s    i    . 
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V. An Illustration of the Auction with Interval Bidding

We illustrate our auction procedure using an example with four suppliers. Two 
suppliers, 1 and 2, can produce up to three units each, and suppliers 3 and 4 can 
produce up to two units each. The auctioneer wishes to buy six units of the good  
( D = 6 ). Cost information and auction dynamics for this example are provided in 
Table 3. For completeness, we also report aggregate supply  As(n, t)  and tentative 
Vickrey prices (see Information Policy and Dynamic Vickrey Pricing in Section IV).

The auctioneer starts a descending price clock at 50. The current clock price is 
interpreted as a per unit payment for supplying the good. At each price, suppliers 
reply with quantities they are willing to supply at the current clock price. In our 
example, when the clock price is above 40, all four suppliers are willing to supply 
any feasible quantity. However, at price of 40, it is not profitable for Supplier 2 to 
supply 1 unit of the good, but it is still profitable to supply 2 or 3 units. Supplier 2 
communicates this information by reducing its bidding interval from   s 2   = {1, 2, 3}  
to   s 2   = {2, 3}  at  p( t 1  ) = 40 . The auctioneer keeps track of all reductions in bid-
ding intervals as the clock price decreases, and uses them to dynamically reconstruct 
suppliers’ cost functions    c ˆ   i    for all  i ∈ {1, 2, 3, 4} .

Table 3—An Illustrative Example of the Auction with Interval Bidding ( D = 6  )

supplier 1 supplier 2 supplier 3 supplier 4
Costs:   c 1   = (20, 30, 35)    c 2   = (40, 50, 60)    c 3   = (20, 30)    c 4   = (25, 40)  
Efficient 3 0 2 1
assignment:

Vickrey 60 0 35 30
payments:

Clock price Bidding intervals/Cost approximations  As(n, t)  
p(0) = 50   s 1   = {1, 2, 3}   s 2   = {1, 2, 3}   s 3   = {1, 2}   s 4   = {1, 2} 10

   c ˆ   1   = (50, 100, 150)    c ˆ   2   = (50, 100, 150)    c ˆ   3   = (50, 100)    c ˆ   4   = (50, 100) 
   p ˆ    1  V  (3) = 150    p ˆ    2  V  (3) = 150    p ˆ    3  V  (2) = 100    p ˆ    4  V  (2) = 100 

 p( t 1  ) = 40   s 1   = {1, 2, 3}   s 2   = {2, 3}   s 3   = {1, 2}   s 4   = {1, 2} 10

   c ˆ   1   = (40, 80, 120)    c ˆ   2   = (40, 80, 120)    c ˆ   3   = (40, 80)    c ˆ   4   = (40, 80) 
   p ˆ    1  V  (3) = 120    p ˆ    2  V  (3) = 120    p ˆ    3  V  (2) = 80    p ˆ    4  V  (2) = 80 

 p( t 2  ) = 25   s 1   = {1, 2, 3}   s 2   = {3}   s 3   = {1, 2}   s 4   = {2} 10

   c ˆ   1   = (25, 50, 75)    c ˆ   2   = (40, 50, 60)    c ˆ   3   = (25, 50)    c ˆ   4   = (25, 50) 
   p ˆ    1  V  (3) = 75    p ˆ    2  V  (3) = 75    p ˆ    3  V  (2) = 50    p ˆ    4  V  (2) = 50 

 p( t 3  ) = 20   s 1   = {2, 3}   s 2   = {  }   s 3   = {2}   s 4   = {  } 7

   c ˆ   1   = (20, 40, 60)    c ˆ   2   = (40, 50, 60)    c ˆ   3   = (20, 40)    c ˆ   4   = (25, 40) 
   p ˆ    1  V  (3) = 60    p ˆ    2  V  (0) = 0    p ˆ    3  V  (2) = 35    p ˆ    4  V  (2) = 40 

 p( t 4  ) = 17.5   s 1   = {2, 3}   s 2   = {  }   s 3   = {2}   s 4   = {  } 6
efficiency    c ˆ   1   = (20, 35, 50)    c ˆ   2   = (40, 50, 60)    c ˆ   3   = (20, 35)    c ˆ   4   = (25, 40) 
proven    p ˆ    1  V  (3) = 60    p ˆ    2  V  (0) = 0    p ˆ    3  V  (2) = 35    p ˆ    4  V  (1) = 25 

 p( t 5  ) = 15   s 1   = {3}   s 2   = {  }   s 3   = {  }   s 4   = {  } 6
Vickrey    c ˆ   1   = (20, 30, 40)    c ˆ   2   = (40, 50, 60)    c ˆ   3   = (20, 30)    c ˆ   4   = (25, 40) 
payments    p ˆ    1  V  (3) = 60    p ˆ    2  V  (0) = 0    p ˆ    3  V  (2) = 35    p ˆ    4  V  (1) = 30 

note:   c 1    = (20, 30, 35)  indicates that supplier 1 can produce 1, 2, or 3 units of the good at a cost of 20, 30, or 35 
correspondingly.
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There are several interesting moments in this example. The first one occurs at   
t 3    when the clock price reaches 20. At this price, both Supplier 2 and Supplier 4 
become inactive, driving the usual aggregate supply (a sum of quantities that sup-
pliers want to deliver at the current price) below the demand. However, the effi-
cient assignment cannot be established at this point. Observe that assignment  
(3, 0, 2, 1), the one where still active suppliers 1 and 3 receive their maximum 
capacities, results in a total cost of 125. At the same time, assignment (3, 0, 1, 2) can 
be procured at a cost of 120 resulting in  As(n,  t 3  ) = 7 . Hence, the auctioneer has to 
continue the auction to find out whether Supplier 3 should be awarded 2 units. At   t 4    , 
when the clock price reaches 17.5,  As(n,  t 4  ) = 6  and the optimality of assignment 
(3, 0, 2, 1) is proven.

However,  As( n −4  ,  t 4  ) = 8  , so the auction should be continued until  E( n −4  )   
is cleared. When the clock price reaches  p( t 5  ) = 15 , Supplier 3 becomes inac-
tive leading to the clearing of  E( n −4  ) . The auctioneer solves for the Vickrey out-
come using the reconstructed cost functions, awarding (3, 0, 2, 1) for payments  
(60, 0, 35, 30).

VI. Conclusion

We have designed an efficient procurement auction for environments with 
homogeneous goods where suppliers have nonincreasing marginal costs and 
capacity constraints. Potential applications include procurement settings where 
the underlying production process exhibits increasing returns, such as the man-
ufacturing of vaccines. The auction design is based on a novel interval bidding 
approach: each supplier is asked to report all quantities that it is willing to supply 
at the current price, not just its optimal supply. Due to nonincreasing marginal 
costs, the supplier’s report always constitutes a connected interval of acceptable 
quantities. The new bidding procedure allows the auctioneer to collect cost infor-
mation via a linear and anonymous price clock, resulting in a fast and simple 
auction. The auction terminates with the Vickrey outcome, ensuring that truthful 
bidding by all suppliers constitutes an ex post equilibrium. Moreover, privacy is 
preserved in the sense that the winners are not required to reveal the costs of pro-
ducing their winning quantities.

Our interval bidding approach can be adapted to other settings. By the usual 
arguments, this approach can be used to sell homogeneous items to buyers with non-
decreasing marginal values. In this setting, all results of the paper hold with obvious 
changes to the notation. Also, the interval bidding procedure and results continue to 
be valid for the setting with homogeneous goods that are fully divisible subject to 
appropriately modifying the process of reconstructing cost functions (e.g., replacing 
formula (2) by its continuous analog).

The interval bidding approach may also be a useful building block in construct-
ing efficient auctions for other settings of practical relevance. One of the most 
interesting settings is the procurement of homogeneous goods from suppliers with 
U-shaped marginal cost curves (i.e., decreasing marginal costs up to some quantity 
and then increasing marginal costs thereafter)—a cost structure commonly used in 
economics. To accommodate this setting, the auctioneer can use a combination of 
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the standard supply elicitation approach and our new interval bidding approach: at 
each clock price, the supplier indicates both its optimal supply and the minimum 
quantity that is still profitable to produce. With this information, the auctioneer can 
reconstruct cost functions in a similar fashion, using them to calculate aggregate 
supply and to determine the stopping time for the auction.

Appendix A: Core Payments

In this Appendix, we provide results pertaining to implementation of the core 
outcomes using the interval bidding approach. A core outcome is an assignment 
vector  x = ( x 1  , … ,  x n  )  and a payment vector   p   C  = (  p  1  C  , … ,  p  n  C  )  such that  x  is 
an efficient assignment for the  E(n  )  and   p   C   belongs to the set of core payments  
 CP(x) :

(A1)    CP(x) =  { p   C  ∈  r   n  such that for all M ⊆ n

     ∑ 
n \M

     c i   ( x i  ) ≤   ∑ 
n \M

     p  i  C  ≤ TC(M  ) −  ∑ 
M
      c i   ( x i  )}   .

A supplier optimal core outcome is a core outcome in which the sum of payments to 
suppliers,   ∑ n        p  i  C   , is maximized. Denote  sOCP(x)  a set of all supplier optimal core 
payments for assignment  x . It is well-known in the literature that the set of supplier 
optimal core payments  sOCP(x)  coincides with the Vickrey payments   p   V  (x)  when 
suppliers are substitutes.24

Analogously to the tentative Vickrey payments defined in (7), define a set of ten-
tative core payments at time  t  for assignment  x  as follows:

(A2)    ̂  CP   (x, t) =  { p   C  ∈  r   n  such that for all M ⊆ n

     ∑ 
n \M

      c ˆ   i   ( x i   , t) ≤   ∑ 
n \M

     p  i  C  ≤   ̂  TC   (M, t) −  ∑ 
M
       c ˆ   i   ( x i   , t)}   .

Analogously to Closing Rule 2, Closing Rule 3 terminates the auction once the 
main economy has been cleared and pays suppliers a payment vector from the set of 
tentative core payments. Theorem 4 below shows that any payment vector from the 
set of tentative core payments also belongs to the set of core payments.

Closing Rule 3: The auctioneer stops the clock price  (T := t)  once the main 
economy has been cleared. suppliers are awarded the tentative allocation for 
the main economy  x =  x ˆ  (n, T  )  and receive a payment vector   p   C   that belongs to  
   ̂  CP  (x, T  ) .25 

24 See Bikhchandani and Ostroy (2002). 
25 In general, such payment vector is not uniquely defined. The auctioneer would need to specify a rule that 

selects one set of payments consistent with the constraints. For example, the auctioneer might select a payment 
vector that maximizes the sum of payments made to suppliers. 
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THEOREM 4: If all suppliers bid truthfully according to their concave cost 
functions, the interval bidding auction procedure with Closing rule 3 imple-
ments an efficient assignment  x =  x ˆ  (n, T  )  and payment vector   p   C   such 
that

(A3)   p   C  ∈ CP(x) .

Lamy (2012) demonstrated that the dynamic procedure developed by Mishra 
and Parkes (2007) for general preferences terminated when the main economy 
clears generates enough information to find at least one bidder optimal core out-
come. Similarly to Proposition 4 in Section III, Proposition 5 shows that the interval 
bidding procedure with Closing Rule 3 cannot in general yield a supplier optimal 
outcome.

PROPOSITION 5: The interval bidding auction procedure with Closing rule 3 in 
general does not yield a supplier optimal core outcome.

PROOF: 
The costs functions used to prove Proposition 4 satisfy SAS. It can be also 

shown that the approximations of cost functions at   t 1    also satisfy SAS. Given 
that the Vickrey payments coincide with the supplier optimal core payments, 
the inability to implement Vickrey payments (proved in Proposition 4) implies 
Proposition 5. ∎

Appendix B: Proofs

PROOF OF PROPOSITION 1: 
Suppose that assignment  x = ( x 1   , … ,  x n  )  is efficient for the economy  E(M)  and 

there are two suppliers,  i  and  j  , such that  0 <  x i   <    
_
 s   i    and  0 <  x j   <    

_
 s    j    . From 

the efficiency of assignment  x  and the concavity of   c i   ( · )  and   c j   ( · )  , we have the 
following:

   c i   ( x i   + 1) −  c i   ( x i  ) ≥  c j   ( x j  ) −  c j   ( x j   − 1) ≥  c j   ( x j   + 1) −  c j   ( x j  ) 

and

   c j   ( x j   + 1) −  c j   ( x j  ) ≥  c i   ( x i  ) −  c i   ( x i   − 1) ≥  c i   ( x i   + 1) −  c i   ( x i  ) .

In other words, taking one unit of the good from supplier  j  and giving it to supplier  i  
is also an efficient assignment for  E(M  ) . Then Proposition 1 follows by iterating this 
argument. ∎
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PROOF OF LEMMA 2:

 (a) For  q ≤  q i   (t)  ,    c ˆ   i   (q, t) =  c i   (q)  by construction. For   q i   (t) < q <    
_
 s    i    , using 

the concavity of   c i   ( · )  , we have 

       c i   (q) ≤  c i   ( q i   (t)) + [ c i   ( q i   (t) + 1) −  c i   ( q i   (t))](q −  q i   (t))

   ≤   c ̃   i   ( q i   (t)) + [ p(t)( q i   (t) + 1) −   c ̃   i   ( q i   (t))](q −  q i   (t))

   =   c ̃   i   ( q i   (t)) + m  c  i  + (t)(q −  q i   (t)) 

  and

       c i   (q) ≤  c i   ( q i   (t)) + [ c i   ( q i   (t)) −  c i   ( q i   (t) − 1)](q −  q i   (t))

   =   c ̃   i   ( q i   (t)) + [  c ̃   i   ( q i   (t)) −   c ̃   i   ( q i   (t) − 1)](q −  q i   (t))

   =   c ̃   i   ( q i   (t)) + m  c  i  −  (t)(q −  q i   (t)) 

  and   c i   (q) ≤   c ̃   i   ( q i   (t)) + m  c i   (t)(q −  q i   (t)) =   c ˆ   i   (q, t)  follows.

 (b) Monotonicity in  q  is by construction. To show concavity, note that for any  
 q ≤  q i   (t) − 1  ,    c ˆ   i   (q, t) =  c i   (q)  and   c i   ( · )  is a concave function. For any  
 q ≥  q i   (t) + 1  ,    c ˆ   i   (q, t)  is linear in q. For  q =  q i   (t)  ,    c ˆ   i   (q, t) −   c ˆ   i   (q − 1, t)  
= m  c  i  −  (t) ≥ m  c i   (t) =   c ˆ   i   (q + 1, t) −   c ˆ   i   (q, t) .

   To show monotonicity in  t  , observe that for  t ′ > t  and  q ≤  q i   (t ′  )  ,  
   c ˆ   i   (q, t ′  ) −   c ˆ   i   (q, t) =  c i   (q) −   c ˆ   i   (q, t) ≤ 0 .

   For  t ′ > t  and  q >  q i   (t ′ )  , 

       c ˆ   i   (q, t′ ) −   c ˆ   i   (q, t) =  c i   ( q i   (t ′  )) −  c i   ( q i   (t)) + m  c i   (t′ )[q −  q i   (t′ )] 

   − m  c i   (t)[q −  q i   (t)]

   ≤ m  c i   (t)[ q i   (t ′  ) −  q i   (t)] + m  c i   (t ′  )[q −  q i   (t ′  )] 

   − m  c i   (t)[q −  q i   (t)]

   = [m  c i   (t ′  ) − m  c i   (t)][q −  q i   (t ′  )]

   ≤ 0 .
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 (c) For any  q ≤  q i   (t)  ,   δ i   (q, t) = 0 . For  q >  q i   (t)  ,

      δ i   (q + 1, t) −  δ i   (q, t) = m  c i   (t) − [ c i   (q + 1) −  c i   (q)]

   ≥ [ c i   ( q i   (t) + 1) −  c i   ( q i   (t))] 

   − [ c i   (q + 1) −  c i   (q)]

   ≥ 0 .

 (d) The inequality in part (d) is equivalent to

  (B1)      c ˆ   i   (q, t) −   c ˆ   i   (q′, t) ≤   c ˆ   i   (q, t ′  ) −   c ˆ   i   (q′, t ′  ) .

  For any  q ∈  s i    and any  t ′ ≥ t  ,    c ˆ   i   (q, t) ≥   c ˆ   i   (q, t ′  )  by property (b). Then for 
any  q ≤  q i   (t) ,    c ˆ   i   (q, t) =  c i   (q)  and    c ˆ   i   (q, t ′  ) =  c i   (q)  , and inequality (B1) 
follows.

  For  q >  q i   (t)  ,

      c ˆ   i   (q, t) −   c ˆ   i   (q′, t) = m  c i   (t)[q − q′  ],

     c ˆ   i   (q, t ′  ) −   c ˆ   i   (q′, t ′  ) ≥ m  c i   (t ′  )[q − q′  ] 

  and inequality (B1) follows from

      c ˆ   i   (q, t ′  ) −   c i   ˆ   (q′, t ′  ) ≥ m  c i   (t ′  )[q − q′  ]

   ≥ m  c i   (t)[q − q′  ]

   =   c ˆ   i   (q, t) −   c ˆ   i   (q′, t) . ∎ 

PROOF OF LEMMA 3: 

 (a) By a trivial rearrangement of terms in (5).

 (b) (b) follows from (a).
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 (c) If   ∑ M          
_
 s    i   ≤ D  , then  As(M, t) = D  for all  t ∈ [0, T  ] . If   ∑ M          

_
 s    i   > D  , 

then the auctioneer would never use the alternative source for procurement. 
For  t ′ > t , let  x =  x ˆ  (M, t)  and  x′ =  q ˆ  (M, t ′  )  denote assignments that 
 minimize the costs of procurement. Since  As(M, t) = D  , then   x i   =    

_
 s    i    for 

all  i ∈ A(M, t) . Thus,

      0 ≤  ∑ 
M
       c ˆ   i   ( x  i  ′  , t) −  ∑ 

M
       c ˆ   i   ( x i   , t)

   =   ∑ 
A(M, t)

    [  c ˆ   i   ( x  i  ′  , t) −   c ˆ   i   (   
_
 s    i   , t)] +   ∑ 

I(M, t)
    [  c ˆ   i   ( x  i  ′  , t) −   c ˆ   i   ( x i   , t)]

   ≤   ∑ 
A(M, t)

    [  c ˆ   i   ( x  i  ′  , t′  ) −   c ˆ   i   (   
_
 s    i   , t ′  )] +   ∑ 

I(M, t)
    [  c ˆ   i   ( x  i  ′  , t ′  ) −   c ˆ   i   ( x i   , t ′  )]

   =  ∑ 
M
       c ˆ   i   ( x  i  ′  , t ′  ) −  ∑ 

M
       c ˆ   i   ( x i   , t ′  )   .

  The second inequality follows from (1) property (d) of Lemma 2 for suppli-
ers in  A(M, t) ; and (2) no cost updating between  t  and  t ′  for bidders in  I(M, t) .  
The inequality shows that  x =  x ˆ  (M, t)  also solves cost minimization prob-
lem at  t ′  , but then  As(M, t ′  ) = D .

   A possibility of nonmonotonic aggregate supply  As(M, t)  in  t  is demon-
strated with an example in Table B1 where the auctioneer demands five units  
(D = 5) .

 (d) If at time  t  ,   ∑ A(M, t)          
_
 s    i   = D  , then for all inactive suppliers    c ˆ   i   (q, t)  

=  c i   (q) ≥ p(t)q  for all  q ∈  s i    . For all active suppliers    c ˆ   i   (q, t) ≤ p(t)q  for 
all  q ≥  q i   (t) . Since    c ˆ   i   ( ·, t)  is concave in  q  for all  i ∈ M  by Lemma 2(b), the 
tentative assignment   x ˆ  (M, t)  for economy  E(M  )  is as follows:    x ˆ   i   (M, t) =    

_
 s    i    

for all  i ∈ A(M, t)  and    x ˆ   i   (M, t) = 0  for all  i ∈ I(M, t)  by Proposition 1. 
But then  As(M, t) = D  by property (a) of Lemma 3. ∎

PROOF OF PROPOSITION 2: 
Suppose that   x ˆ   =  x ˆ  (M, t)  is not efficient for economy  E(M  ) , and there exists an 

efficient assignment  x′  such that

   ∑ 
M
      c i   ( x  i  ′    ) +   _ c    [D −  ∑ 

M
      x  i  ′  ]  <  ∑ 

M
      c i   (  x ˆ   i  ) +   _ c    [D −  ∑ 

M
       x ˆ   i  ]  .
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Note that    x ˆ   i   =    
_
 s    i    for all  i ∈ A(M, t) . Then by Lemma 2(c),   δ i   ( x  i  ′   , t) ≤  δ i   (  x ˆ   i   , t)  for 

all  i ∈ A(M, t) . But then

    ̂  TC  (M, t) =  ∑ 
M
       c ˆ   i   (  x ˆ   i   , t) +   

_
 c    [D −  ∑ 

M
       x ˆ   i  ] 

 =  ∑ 
M
      c i   (  x ˆ   i  ) +   ∑ 

A(M, t)
     δ i   (  x ˆ   i   , t) +   

_
 c    [D −  ∑ 

M
       x ˆ   i  ] 

 >  ∑ 
M
      c i   ( x  i  ′    ) +   ∑ 

A(M, t)
     δ i   ( x  i  ′   , t) +   

_
 c    [D −  ∑ 

M
      x  i  ′  ] 

 =  ∑ 
M
       c ˆ   i   ( x  i  ′   , t) +   

_
 c    [D −  ∑ 

M
      x  i  ′  ]   ,

which is a contradiction to   x ˆ    solving the cost minimization problem (4) at time  t .
Given that   x ˆ  (M, t)  is efficient,

    ̂  TC  (M, t) =  ∑ 
M
       c ˆ   i   (  x ˆ   i   , t) +   

_
 c    [D −  ∑ 

M
      x i  ] 

 =  ∑ 
M
      c i   (  x ˆ   i  ) +  ∑ 

M
      δ i   (  x ˆ   i   , t) +   

_
 c    [D −  ∑ 

M
       x ˆ   i  ] 

 = TC(M  ) +  ∑ 
M
      δ i   (  x ˆ   i   , t)

 = TC(M  ) +   ∑ 
A(M, t)

     δ i   (  x ˆ   i   , t) . ∎

Table B1—Example of Nonmonotonic  AS(N, t)  ( D = 5 )

supplier 1 supplier 2 supplier 3 supplier 4

Costs:   c 1   = (12, 20, 21)    c 2   = (12, 20, 21)    c 3   = (11)    c 4   = (7)  
Clock price  p(t) : As(n, t)

 p(0) = 15    s 1   = {1, 2, 3}   s 2   = {1, 2, 3}   s 3   = {1}   s 4   = {1} 8

   c ˆ   1   = (15, 30, 45)    c ˆ   2   = (15, 30, 45)    c ˆ   3   = (15)    c ˆ   4   = (15) 

 p( t 1  ) = 12    s 1   = {2, 3}   s 2   = {2, 3}   s 3   = {1}   s 4   = {1} 8

   c ˆ   1   = (12, 24, 36)    c ˆ   2   = (12, 24, 36)    c ˆ   3   = (12)    c ˆ   4   = (12) 

 p( t 2  ) = 11    s 1   = {2, 3}   s 2   = {2, 3}   s 3   = {  }   s 4   = {1} 7

   c ˆ   1   = (12, 22, 32)    c ˆ   2   = (12, 22, 32)    c ˆ   3   = (11)    c ˆ   4   = (11) 

 p( t 3  ) = 10    s 1   = {3}   s 2   = {3}   s 3   = {  }   s 4   = {1} 7

   c ˆ   1   = (12, 20, 28)    c ˆ   2   = (12, 20, 28)    c ˆ   3   = (11)    c ˆ   4   = (10) 

 p( t 4  ) = 8    s 1   = {3}   s 2   = {3}   s 3   = {  }   s 4   = {1} 8

   c ˆ   1   = (12, 20, 24)    c ˆ   2   = (12, 20, 24)    c ˆ   3   = (11)    c ˆ   4   = (8) 

note:   c 1    = (12, 20, 21)  indicates that supplier 1 can produce 1, 2, or 3 units of the good at a 
cost of 12, 20, or 21 correspondingly.
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PROOF OF PROPOSITION 3: 

AR1: Weakly increasing     s _   i   (t) results in a weakly increasing   t i   (q)  for  q ≤  q i   (t) . 
The implied average cost function for  q ≤  q i   (t)  is    c ̃   i   (q)/q = p( t i   (q)) . Then, given 
decreasing  p(t)  , the implied average cost function is weakly decreasing in  q . For the 
converse, AR1 is satisfied by Lemma 1.

AR2: Suppose that supplier  i  increases its     s _    i   (t)  by one unit at  t . Then    c ̃   i   ( q i   (t))  
= p(t) q i   (t) . If  m  c  i  +  (t) ≤ m  c  i  −  (t)  at time  t  , then    c ̃   i   ( q i   (t)) −   c ̃   i   ( q i   (t) − 1)  
≤   c ̃   i   ( q i   (t) − 1) −    c ̃   i   ( q i   (t) − 2) , implying nonincreasing marginal costs. If  m  c  i  +  (t)  
> m  c  i  −  (t)  at time  t  , then    c ̃   i   ( q i   (t)) −   c ̃   i   ( q i   (t) − 1) >   c ̃   i   ( q i   (t) − 1) −   c ̃   i   ( q i   (t) − 2) , 
implying increasing marginal costs. For the converse, AR2 is trivially satisfied.

AR3: If  p(t)   s _    i  (t) =   c ̃   i   ( q i   (t))  at  t  , then  m  c i   (t) = 0 . But then the only weakly 
increasing cost function consistent with the bidding of supplier  i  is    c ̃   i   (q)  
= p( t i   (q))q  for all  q ≤  q i   (t)  and    c ̃   i   (q) =   c ̃   i   ( q i   (t))  for all  q >  q i   (t) . For the con-
verse, AR3 is trivially satisfied. ∎

PROOF OF THEOREM 3: 
Theorem 4 is a generalization of Theorem 3. The proof for Theorem 3 can be 

produced by applying the proof for Theorem 4 to  M =  n −i   . ∎

PROOF OF THEOREM 4: 
Since  E(n  )  clears at  t  ,  x =  x ˆ  (n, t)  is an efficient allocation for  E(n  )  by 

Proposition 2. Suppose that economy  E(M )  clears at  t ′ ≥ t  , then for any  s ≥ t ′ :

      ̂  TC  (M, s) −  ∑ 
M
       c ˆ   i   ( x i   , s)

     = TC(M) +  ∑ 
M
     [  c ˆ   i   (  x ˆ   i   (M, s), s) −  c i   (  x ˆ   i   (M, s))] −  ∑ 

M
       c ˆ   i   ( x i   , s)

     = TC(M  ) +   ∑ 
A(M, s)

    [  c ˆ   i   ( x i   , s) −  c i   ( x i  )] −   ∑ 
A(M, s)

      c ˆ   i   ( x i   , s) −   ∑ 
I(M, s)

     c i   ( x i  )

     = TC(M  ) −  ∑ 
M
      c i   ( x i  ) ,

where the second equality holds since   x i   =   x ˆ   i   (n, t) =   x ˆ   i   (M, s) =    
_
 s    i    for all  

i ∈ A(M, s)  , and    c ˆ   i   ( x i   , s) =  c i   ( x i  )  for all  i ∈ I(M, s) .
Now we demonstrate that    ̂  TC  (M, s) −  ∑ M         c ˆ   i   ( x i   , s)  is weakly increasing in  s  on  

[t, t ′  ] . Function    ̂  TC  (M, s) −  ∑ M         c ˆ   i   ( x i   , s)  is continuous in  s . Hence, we only need 
to consider  s, s′ ∈ [t, t ′  ]  such that  s < s′  and   x ˆ  (M, s) =  x ˆ  (M, s′  ) ;26

26 If   x ˆ  (M, s) ≠  x ˆ  (M, s′  )  , the interval  [s, s′  ]  can be partitioned into finitely many intervals  [ s 1  ,  s 2  ],  
[ s 2  ,  s 3  ], … , [ s k−1  ,  s k  ]  where   s 1   = s  and   s k   = s′  such that   x ˆ  (M, z) =  x ˆ  (M, z′  )  for any  z, z′ ∈ [ s l−1  ,  s l  ]  and any  
l = 2, … , k . 
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     ̂  TC  (M, s) −   ̂  TC  (M, s′  ) 

    =  ∑ 
M
     [  c ˆ   i   (  x ˆ   i   (M, s), s) −   c ˆ   i   (  x ˆ   i   (M, s′  ), s′  )]

    =   ∑ 
A(M, s)

    [  c ˆ   i   (  x ˆ   i   (M, s), s) −   c ˆ   i   (  x ˆ   i   (M, s′  ), s′  )]

    ≤   ∑ 
A(M, s)

    [  c ˆ   i   (   
_
 s    i   , s) −   c ˆ   i   (   

_
 s    i   , s′  )]  (by Lemma 2(d))

    =   ∑ 
A(M, s)

    [  c ˆ   i   ( x i   , s) −   c ˆ   i   ( x i   , s′  )] +   ∑ 
I(M, s)

    [  c ˆ   i   ( x i   , s) −   c ˆ   i   ( x i   , s′  )]

    =  ∑ 
M
       c ˆ   i   ( x i   , s) −  ∑ 

M
       c ˆ   i   ( x i   , s′  ) .

This implies that all upper bounds on core payments in    ̂  CP  (x, t)  are weakly increas-
ing in  t .

For the lower bounds, by property (b) of Lemma 2:

    ∑ 
n \M

      c ˆ   i   ( x i   , t ′  ) ≤   ∑ 
n \M

      c ˆ   i   ( x i   , t)  ∀ t′ ≥ t  ∀ M ⊆ n ,

implying that all lower bounds for core payments in    ̂  CP  (x, t)  are weakly decreasing 
in  t .

Since both the lower bounds and upper bounds of    ̂  CP  (x, t)  are weakly expanding 
with  t  , and there exists  t ′ ≥ t  such that    ̂  CP  (x, t ′  ) = CP(x)  , it follows that

   p   C  ∈   ̂  CP  (x, t) ⊆ CP(x) . ∎ 
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