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Abstract

Core-selecting auctions were proposed as alternatives to the Vickrey-
Clarke-Groves (VCG) mechanism for environments with complementarities.
In this paper, we consider a simple incomplete-information model that allows
correlations among bidders’ values. We do a full equilibrium analysis of three
core-selecting auction formats as applied to the “local-local-global” model.
We show that seller revenues and efficiency from core-selecting auctions can
improve as correlations among bidders’ values increase, producing outcomes
that are closer to the true core than are the VCG outcomes. Thus, there may
be good reasons for policymakers to utilize core-selecting auctions rather than
the VCG mechanism in realistic environments.

Keywords: Core-selecting auction, combinatorial auction, Vickrey auction,
VCG mechanism, spectrum auction

∗We gratefully acknowledge the support of National Science Foundation Grant SES-09-24773.
We are also grateful to Peter Cramton, Paul Milgrom, John Rust, Alex Teytelboym and Dan
Vincent for valuable conversations and to seminar participants at the University of Maryland,
Carnegie Mellon University, the Econometric Society World Congress, the NBER Market Design
Working Group Meeting, the University of Colorado, the New Economic School and the INFORMS
Annual Meetings for helpful comments. All errors are our own.
†Department of Economics, University of Maryland, College Park, MD 20742, USA. Email:

ausubel@econ.umd.edu
‡Department of Economics, University of Colorado, Boulder, CO 80309, USA. Email:

oleg.baranov@colorado.edu



The celebrated Vickrey-Clarke-Groves (VCG) mechanism has the attractive
property that truth-telling is a dominant strategy for all participants, leading to
efficient allocations.1 However, there is a longstanding theoretical critique warning
us of several reasons to be wary of the Vickrey auction in environments with com-
plementarities. First, the VCG mechanism may generate low revenues and “unfair”
outcomes in the sense that there may be losing bidders willing to pay more than
the winners’ payments. Second, VCG outcomes may be non-monotonic in the sense
that increasing the number of bidders may reduce the seller’s revenues. Third, the
VCG mechanism may be especially vulnerable to unusual forms of collusive behav-
ior, including collusion by losing bidders and shill bidding. The general explanation
for these shortcomings is that the presence of complementarities makes it possible
for the VCG outcome to lie outside of the core.2

Bidding in recent spectrum auctions demonstrates that VCG outcomes outside of
the core are not merely theoretical curiosities but are practical real-world concerns.
In two prominent combinatorial clock auctions in which spectrum was licensed on a
regional basis, the actual bids submitted during the allocation stage produced VCG
outcomes that lay outside the core.3 More strikingly, the 2016-17 FCC Incentive
Auction used the VCG mechanism for its assignment phase, in which winning allo-
cations of generic spectrum were assigned to physical frequencies. There were 228
repetitions of the VCG mechanism conducted for different regions of the US. Of
these 228 instances, there were three occurrences of zero-revenue VCG outcomes
and a total of 38 instances in which the VCG result lay outside the core.4

Theoretical concerns about the performance of the VCG mechanism in the pres-
ence of complementarities led a series of authors to propose remedies. Ausubel and
Milgrom (2002) formulated a specific alternative procedure known as the ascending

1The VCG mechanism was developed in the work of Vickrey (1961), Clarke (1971) and Groves
(1973). Throughout this paper, we will use the terms “VCG mechanism” and “Vickrey auction”
interchangeably.

2The core is the subset of allocations in payoff space that are feasible and unblocked by any
coalition. When the auction outcome is not in the core, there exists a coalition of bidders willing
to renegotiate the outcome with the seller, leading to instability. See Ausubel and Milgrom (2002,
2006) for these critiques and for a general characterization.

3These two auctions were the 2014 Canadian 700 MHz Auction ($5.27 billion in revenues) and
the 2015 Canadian 2500 MHz Auction ($755 million in revenues). Note that the rules of these
auctions included use of a core-selecting mechanism, so the actual outcomes were in the core relative
to these bids. Also note that the bids from these auctions were disclosed after the auction on the
Canadian regulator’s website, https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf01714.
html, but to the authors’ knowledge, these have been the only combinatorial clock auctions with
package bidding and regional licenses to date in which the regulator disclosed the bids.

4See Section 8 of Ausubel, Aperjis and Baranov (2018). Most prior spectrum auctions that
utilized assignment rounds had used core-selecting auctions to determine the prices of bidders’
physical assignments. However, the FCC Incentive Auction used the VCG mechanism, in order to
minimize the extent to which revenues would be diverted from the main stage of the auction to
the assignment stage.
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proxy auction. Day and Raghavan (2007) and Day and Milgrom (2008) proposed an
entire class of alternative payment rules that have become known as core-selecting
auctions. As in the VCG mechanism, bidders submit package bids in core-selecting
auctions, and the auctioneer determines the combination of bids that maximizes
the total value subject to feasibility. Unlike the VCG mechanism, the core-selecting
pricing rule assures that the auction outcome is always in the core relative to the re-
ported values. Despite their recent development, core-selecting auctions are already
being actively used today in major auction applications, mainly as components of
the combinatorial clock auction design for spectrum auctions.5

In complete-information settings, core-selecting auctions have been shown to
have efficient equilibria that generate higher revenues than the VCG mechanism.
However, the complete-information assumption is critical for these results, and much
of the motivation for using the VCG or other auction mechanisms is that bidders
possess incomplete and asymmetric information. With incomplete information, bid-
der incentives for truthful bidding become important. Day and Raghavan (2007)
and Day and Milgrom (2008) proposed a class of bidder-optimal core-selecting auc-
tions that is shown to minimize the maximal gains from deviations from truthful
bidding.6

In our paper, we consider a stylized class of models with incomplete information
which is colloquially known as the local-local-global (LLG) model.7 In this model,
the auctioneer wishes to allocate two items. Two “local” bidders are interested in
a single item each and they jointly compete against the “global” bidder who values
both items as perfect complements. With truthful bidding, the VCG outcome falls
outside the core whenever local bidders win (their total payment is less than the
value of the global bidder). At the same time, the use of a core-selecting auction
leads to a severe free-rider (or “threshold”) problem between local bidders who face
a common core-constraint imposed by the global bidder.

It is reasonable to expect some value correlations among all bidders in this model.
To simplify the analysis, we abstract away any global-local correlations; including
them would merely introduce correlations between competing parties that are well
understood in the literature. However, we preserve the local-local correlations, as
they are essential for obtaining our key insights. These are value correlations be-
tween two local bidders who need to cooperate in order to outbid the global bidder,

5For examples of recent spectrum auctions that have used a core-selecting component, in-
cluding the detailed auction rules and their results, see https://www.ofcom.org.uk/spectrum/

spectrum-management/spectrum-awards/awards-archive/800mhz-2.6ghz and http://www.

ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf10598.html. For discussions, see Cramton (2013)
and Ausubel and Baranov (2017).

6“Bidder-optimal core-selecting auctions” are mechanisms that always choose allocations that
minimize revenues within the set of core allocations and, hence, are optimal from the bidder’s
viewpoint.

7To the best of our knowledge, the model first appeared in Krishna and Rosental (1996).

2

https://www.ofcom.org.uk/spectrum/spectrum-management/spectrum-awards/awards-archive/800mhz-2.6ghz
https://www.ofcom.org.uk/spectrum/spectrum-management/spectrum-awards/awards-archive/800mhz-2.6ghz
http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf10598.html
http://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/h_sf10598.html


and the structure of the auction pricing rule can affect their ability to cooperate.
While in general, local-local correlations might be less likely than global-local cor-
relations, there are a number of important practical settings (including the reverse
part of the FCC Incentive Auction8 and the assignment phase of any spectrum
auction9) where we would expect local-local correlations to be prevalent.

Several papers study the equilibrium performance of various bidder-optimal core-
selecting auctions using the same LLG setting. Erdil and Klemperer (2010) define
a class of payment rules referred to as “reference rules” and argue that they re-
duce the marginal incentive to deviate as compared to other core-selecting payment
rules. Sano (2010) provides an equilibrium analysis of a sealed-bid version of the
“ascending” proxy auction and Sano (2012) studies the dynamic version of the same
payment rule. Hafalir and Yektaş (2015) characterize an auction that minimizes the
core deviation using the mechanism design approach.

We perform an equilibrium analysis for three bidder-optimal core-selecting rules:
the proxy rule proposed by Ausubel and Milgrom (2002), the nearest-VCG rule
due to Day and Cramton (2012), and a nearest-bid rule that we are introducing
here for completeness. While the performance of these rules cannot be ranked
in general, we show that an unambgiuous ranking exists under the assumption of
perfect correlation. The proxy rule is shown to depend the least on the bidder’s
own bids, thus providing the best incentives and leading to the best performance.
In contrast, the nearest-bid rule is shown to induce almost first-price-like incentives
for bid shading, producing the worst performance.

An important negative result in the literature is due to Goeree and Lien (2016).
For independent private value settings, the authors show that any core-selecting

8Consider a reverse auction in which the auctioneer needs to repack three TV stations into two
adjacent channels in a geographic area (and buy out any stations that cannot be repacked). There
is one full-power station, which creates both co-channel and adjacent-channel interference when
broadcasting, so putting this station on either channel renders the other channel unusable. There
are also two low-power stations, which create only co-channel interference, so they can coexist on
adjacent channels. Together, the three stations interact exactly as in the LLG model. However,
the local bidders have more in common with each other than with the global bidder; indeed, the
local bidders are low-power stations that are essentially in a different industry than the full-power
station. Consequently, it is plausible that there may be a high degree of correlation between the
two local bidders’ values, while very little correlation with the global bidder’s value.

9Consider an assignment phase that allocates four contiguous spectrum licenses, A, B, C and
D, among three bidders. One bidder (global) has the right to receive two contiguous licenses and
has a strong preferences for winning AB (perhaps, the global bidder already owns licenses adjacent
to A from below and winning AB would create a large contiguous segment). Two other bidders
(locals) have the right to receive one license each and have preferences for preventing the global
bidder from obtaining AB. This can be accomplished by a local bidder winning either A or B.
Thus, the three bidders interact as in the LLG model, where the winning side receives AB and
the losing side gets CD. Furthermore, it is quite plausible that the values of the local bidders (the
benefit of depriving the global bidder of a large contiguous segment) are strongly correlated with
each other while being relatively independent of the global bidder’s value.
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auction that has an efficient equilibrium generates the same expected revenue as the
VCG mechanism (due to the revenue equivalence theorem). This result implies that
“truly core-selecting auctions” (mechanisms that select core outcomes with respect
to true values) do not generally exist. In addition, they provide an illustrative
example using the LLG setting where the nearest-VCG rule produces both lower
efficiency and lower revenues than the VCG mechanism.

Our findings generally go in the opposite direction of those of Goeree and Lien
(2016). First, we show that the revenue comparison in their illustrative example re-
lies on specific distributions and can be reversed. Second, we find that the presence
of correlations can dramatically affect the equilibrium performance of core-selecting
auctions, both in the positive and negative directions, depending on the structure
of the pricing rule. Most remarkably, under certain assumptions, the proxy rule
is shown to achieve the first-best performance by inducing truthful bidding in the
unique equilibrium. Thus, our analysis shows that core-selecting auctions can per-
form reasonably well in nontrivial, empirically-relevant settings.

Basing our analysis on value correlations might initially come across as inapt.
We know from Crémer and McLean (1985) and McAfee and Reny (1992) that all
informational rents can be extracted from bidders with correlated types, enhancing
both efficiency and revenues. However, such optimal mechanisms employ transfers
to administer punishments that violate ex post rationality, and such optimal mech-
anisms can be sensitive to the exact information structure. We do not consider such
mechanisms here. Instead, our analysis is more in the spirit of the so-called “Wilson
doctrine,” in that we analyze specific sets of auction rules from the literature that
are similar to rules in actual use. “The rules of these markets are not changed daily
as the environment changes; rather they persist as stable, viable institutions” (Wil-
son, 1987, p. 36). They are reasonably robust to small changes in the information
structure and they are always ex post rational for bidders. Furthermore, observe
that correlations bring our setting closer to the complete-information environment
where core-selecting auctions perform well. The underlying reason for the good
performance is the knowledge of the efficient outcome: knowing which side of the
market, global or local, must win. However, allowing local-local correlations does
not enhance this knowledge in our model; instead, it only affects the ability of lo-
cal bidders to overcome their free-rider problem under specific rules of a particular
auction.

Our paper proceeds as follows. Section 1 contains the model and describes
various core-selecting auctions. Section 2 derives the intuitive form for the optimality
conditions that enable the equilibrium analysis. The case of imperfect correlation is
considered in Section 3, and the case of perfect correlation is considered in Section 4.
Discussion of the results is provided in Section 5 and Section 6 concludes. Technical
proofs can be found in the Appendix.
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1 Model

Two items are offered for sale. There are two local bidders, 1 and 2, who are
interested in only one item and receive no extra utility from acquiring the second
item. Their values are denoted v1 and v2, respectively. There is also a global bidder
who wants to acquire both items and obtains no utility from owning just one item.
Her value for the pair of items is denoted u. Bidders are risk neutral and have
quasilinear utilities: the payoff of local bidder i, if she wins one unit at price pi, is
vi − pi; and the payoff of the global bidder, if she wins both units at a total price
of p, is u− p. The model can be interpreted as an environment where the items are
taken either to be homogeneous or heterogeneous.10

The value u of the global bidder is independently drawn from the distribution on
[0, ū] defined by a cumulative distribution function G(u) with atomless probability
density function g(u). For the local bidders, we consider two correlation models.
In the first model, referred to as the standard model, values v1 and v2 of local
bidders are given by a weighted sum of the common component s and a private
component zi, i.e., vi = γ s + (1 − γ) zi for both bidders. Parameter γ ∈ [0, 1]
controls the strength of correlation between the local bidders’ values. In the second
model, referred to as the analytical model, parameter γ represents the probability
that both local bidders have exactly the same value. Formally, with probability γ,
the values of both local bidders are equal to the common component s, and with
probability (1−γ), each value vi is equal to the corresponding private component zi.
In both models, each local bidder observes only its own realization of vi. Variables
s, z1, z2 are drawn independently from a distribution on [0, v̄] defined by a cumulative
distribution function F (v) with atomless density f(v). Throughout the paper, we
assume that ū ≥ 2 v̄.

The main advantage of the analytical model is that it avoids dealing with con-
volutions of random variables while closely following the conditional distributional
properties of the standard model. Conditional CDFs F (vj|vi = x) in both models
are the same when values are fully independent (γ = 0) and perfectly correlated
(γ = 1). Conditional CDFs of local bidder i who observed vi = 0.5 for several non-
trivial values of correlation parameter γ ∈ (0, 1) are shown in Figure 1 (assuming
that F is uniform).

It is important to note that in the analytical model, vi and vj are not affiliated
random variables as long as γ > 0.11 Nevertheless, for any y ≥ x, F (vj|vi = y) first-

10In the former case, local bidder i derives positive utility vi from winning either item, and
the global bidder exhibits classic increasing returns to scale. In the latter case, there are two
heterogeneous items, A and B; local bidder 1 obtains positive utility only from A, local bidder 2
obtains positive utility only from B and the global bidder views A and B as perfect complements.

11Consider x > y > z and let Ψ(., .) denote the joint probability of vi and vj . Then (y, y) ∨
(x, z) = (x, y) and (y, y) ∧ (x, z) = (y, z), but Ψ(x, y) ·Ψ(y, z) < Ψ(y, y) ·Ψ(x, z), contradicting
the affiliation inequality.
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Figure 1: F ( vj | vi = 0.5 ) for γ ∈ { 0.1, 0.5, 0.9 } (drawn for F (x) = x)

order stochastically dominates F (vj|vi = x), so vi and vj are positively depend on
each other. The failure of affiliation would prevent some of the results in the theory of
single-item auctions from going through. For example, the analytical model creates
a probability mass point in the conditional distribution function which would result
in nonexistence of the equilibrium in a standard first-price auction for a single item.12

This concern is not an issue in the current framework due to a different structure
of competition. Local bidder 1 is not competing with local bidder 2; rather they
jointly compete against the global bidder.

We consider a restricted class of sealed-bid auctions in which each bidder is
allowed to place only one bid. In particular, each local bidder i bids bi ≥ 0 for the
item she values, and the global bidder bids B ≥ 0 for the package.13

In each of the core-selecting auctions considered, the auctioneer selects a value-
maximizing allocation. In the LLG model, only two outcomes are possible: the
global bidder wins both items when B > b1 + b2, and the local bidders win one
item each when B < b1 + b2. Ties are resolved using a fair randomizing device.
The payment of each winner depends on the pricing rule. We denote p(b1, b2, B) a
payment vector associated with bids b1, b2 and B for a particular pricing rule.

All auction mechanisms analyzed in this paper, other than the VCG mechanism,
satisfy the following definition. A core-selecting auction is a mapping from bids to
allocations and payments such that the payoffs resulting from every bid profile are
elements of the core. Core-selecting auctions that always choose a bidder-optimal
element of the core are referred to as bidder-optimal core-selecting auctions.

12Consider a symmetric first-price auction with two bidders whose values are correlated in the
same way. If one bidder knows that the other bidder has the same value with a positive probability,
her best response fails to exist.

13See Ott and Beck (2013) for the analysis of the LLG model when bidders are allowed to submit
bids on bundles that include unwanted items.
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In the LLG setting, the payment rule of the VCG mechanism is given by:

p(b1, b2, B) =

{
(pV1 , p

V
2 , 0) if B < b1 + b2

(0, 0, b1 + b2) if B > b1 + b2
(1.1)

where pV1 = max {0, B − b2} and pV2 = max {0, B − b1}. A pricing rule associated
with a core-selecting auction is given by:

p(b1, b2, B) =

{
(p1, p2, 0) if B < b1 + b2

(0, 0, P ) if B > b1 + b2
(1.2)

such that p1 ∈ [pV1 , b1], p2 ∈ [pV2 , b2], p1 + p2 ≥ B and P ∈ [b1 + b2, B]. Finally,
p1 + p2 = B and P = b1 + b2 in any bidder-optimal core-selecting auction. In the
paper, we explicitly consider several bidder-optimal core-selecting auctions. In all
of them, the global bidder pays b1 + b2 upon winning. When local bidders win, they
split the total payment of B as follows (it is assumed that b1 ≥ b2 for convenience):

(1) Proxy Rule (Nearest-Zero Rule)

The “ascending” proxy auction was suggested by Ausubel and Milgrom (2002).
For the LLG model, it is equivalent to selecting a point in the bidder-optimal
core which is the closest to zero and is summarized as follows:

p(b1, b2, B) =

{ (
1
2B,

1
2B, 0

)
if 0 ≤ B ≤ 2 b2

(B − b2, b2, 0) if 2 b2 < B < b1 + b2
(1.3)

(2) Nearest-VCG Rule

The nearest-VCG pricing rule was introduced by Day and Cramton (2012),
superseding the suggestion of minimizing the maximum deviation from the
VCG payments that was made in Day and Raghavan (2007). The central idea
of this rule is to select the bidder-optimal core allocation that minimizes the
Euclidean distance from the VCG outcome. For the LLG model, this rule is
summarized as follows:

p(b1, b2, B) = (pV1 + ∆, pV2 + ∆, 0) (1.4)

where ∆ = 1
2

(B − pV1 − pV2 ).

(3) Nearest-Bid Rule

The nearest-bid description corresponds to the bidder-optimal core allocation
that is the closest to the winners’ bids.14 For the LLG model, the rule is

14The nearest-bid rule can be articulated as follows. In case of winning, each local bidder pays
her bid minus a discount. The amount of the discount is half of the “money left on the table”,
i.e. 1

2 [b1 + b2 − B]. When bids are too different, the amount of the discount can exceed the bid
amount in which case the bidder pays zero.
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summarized as follows:

p(b1, b2, B) =

{
(B, 0, 0) if 0 ≤ B ≤ b1 − b2

(b1 − ∆, b2 − ∆, 0) if b1 − b2 < B < b1 + b2
(1.5)

where ∆ = 1
2

(b1 + b2 − B).

2 Preliminary Analysis

We start by introducing the pivotal pricing property. Suppose that the set of
value-maximizing allocations includes several allocations and there is a bidder who
can either win a non-empty set of items or win nothing depending on a realization
of a tie-breaking rule. If the auction satisfies the pivotal pricing property, then such
bidder must necessarily pay its bid amount in case she is awarded a non-empty set
of items.

It is easy to verify that the VCG mechanism satisfies this property. It can be
shown that this pivotal pricing property holds for all core-selecting auctions in the
general setting. Here we state it for the LLG setting (where the tie-breaking occurs
only when b1 + b2 = B and this property is trivially satisfied).

Lemma 1. Every core-selecting auction satisfies the pivotal pricing property in the
LLG model.

We further restrict the class of bidder-optimal core-selecting auctions that we
consider by imposing the following regularity conditions. For local bidder i, and any
bid vector (b1, b2, B) such that local bidders win, her price function pi(b1, b2, B) is
continuous in all bids and differentiable in her own bid. In addition, for any bid
vector, her marginal payment is nonnegative (i.e., a bid increase cannot decrease the
payment). It is easy to verify that the VCG mechanism and core-selecting auctions
(1.3) – (1.5) satisfy these regularity conditions.

It is well-known that truthful bidding is a weakly dominant strategy for all
bidders in the VCG mechanism. Lemma 2 identifies weakly dominated strategies in
bidder-optimal core-selecting auctions in the LLG model.

Lemma 2. Suppose that a bidder-optimal core-selecting auction satisfies the regu-
larity conditions. Then, for the global bidder, bidding her value is a weakly dominant
strategy; and for a local bidder, bidding above her value is a weakly dominated strat-
egy.

For the equilibrium analysis, we assume that the global bidder always bids ac-
cording to her weakly dominant strategy B(u) = u and each local bidder i bids
according to βi(vi) such that βi(vi) ≤ vi for all vi ∈ [0, v̄]. Denote Φi(bi, vi) and
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φi(bi, vi) the probability of winning and its marginal for local bidder i when she bids
bi ∈ [0, vi]:

Φi(bi, vi) = Pr(bi + βj(vj) ≥ u)

φi(bi, vi) =
∂ Φi(bi, vi)

∂ bi

(2.1)

In addition, denote Pi(bi, vi) and MPi(bi, vi) the expected payment and the expected
marginal payment for local bidder i when she bids bi ∈ [0, vi]:

Pi(bi, vi) = E
[
pi(bi, βj(vj), u) | vi

]
MPi(bi, vi) = E

[
∂ pi(bi, βj(vj), u)

∂ bi

∣∣∣∣ vi] (2.2)

Next proposition simplifies the first-order optimality conditions for local bidders
in all bidder-optimal core-selecting auctions that satisfy regularity conditions. Note
that such auctions satisfy the pivotal pricing property by Lemma 1.

Proposition 1. Suppose that a bidder-optimal core-selecting auction satisfies the
regularity conditions. Then the optimality condition for choosing bid bi ≥ 0 for a
local bidder i is given by:

(vi − bi)φi(bi, vi) ≤ MPi(bi, vi)

with equality when bi > 0
(2.3)

Intuitively, a small increase in bi increases bidder’s profit by allowing her to win
in the pivotal state (while paying bi due to the pivotal pricing property) at the cost
of increasing her expected marginal payment in non-pivotal states. At the optimum,
both effects have to be equal.

3 Imperfect Correlation (γ < 1)

This section contains equilibrium analysis for the case of imperfect correlation
between values of two local bidders. We consider two ways of modeling this correla-
tion. In the standard model, value of local bidder i is given by vi = γ s + (1− γ) zi
where zi is a private component and s is a common component. In the analytical
model, v1 = v2 = s with probability γ and v1 = z1, v2 = z2 with probability
1 − γ. When γ ∈ (0, 1), the inference of bidder i about vj given her own vi differ
between two models.

We consider each model in turn. For the analytical model, we find the symmet-
ric equilibrium for each pricing rule assuming that the global bidder draws its value
from a uniform distribution. For the standard model, we numerically approximate
optimality conditions under the same assumptions and demonstrate that the result-
ing bidding functions are qualitatively very similar to the corresponding equilibria
of the analytical model.
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3.1 Analytical Model

In this section, we present our first main result (Theorem 1) that proves existence
of the symmetric equilibrium for each pricing rule (including implicit formulas for
equilibrium bidding functions) assuming that the global bidder draws its value from a
uniform distribution. We present an example of the environment where equilibrium
bidding functions can be obtained as closed-form solutions (Corollary 1). Then
the implicit solutions from Theorem 1 are used to prove comparative static results
(Corollaries 2 and 3).

Theorem 1. Consider the analytical model with G(u) = u/ū. For each pricing rule
(1) – (3), the unique symmetric Bayesian-Nash equilibrium exists and the equilibri-
um bidding function for local bidders is implicitly given by:

(a) for the proxy rule

β(v) = max
{

0, β̃(v)
}
, (3.1)

where β̃(v) solves

β̃′(v) =
1

γ + (1 − γ)F (v)
and β̃(v̄) = v̄ ; (3.2)

(b) for the nearest-VCG rule

β(v) = max

{
0,

2

2 + γ

(
v − v̂

)}
, (3.3)

where v̂ ∈ (0, v̄) is a unique solution to

v̂

(1 − F (v̂))
=

1 − γ

2 + γ
E
(
v − v̂ | v ≥ v̂

)
; (3.4)

(c) for the nearest-bid rule

β′(v) =
1

2 − (1 − γ)F (v)
and β(0) = 0. (3.5)

The implicit solutions from Theorem 1 have closed forms for some distribution
functions. For example, equilibrium bidding functions can be found analytically
when F (.) is a uniform distribution on [0, 1] and ū ≥ 2.

Corollary 1. Consider the analytical model with F (v) = v and G(u) = u/ū. The
equilibrium bid function of local bidders in the symmetric Bayesian-Nash equilibrium
is given by:
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(a) for the proxy rule

β(v) = max

{
0, 1 +

ln(γ + (1 − γ) v)

1 − γ

}
; (3.6)

(b) for the nearest-VCG rule

β(v) = max

{
0,

2

2 + γ

(
v − v̂

)}
where v̂ =

3−
√

9− (1− γ)2

1− γ
; (3.7)

(c) for the nearest-bid rule

β(v) =
1

1 − γ

[
ln(2) − ln(2 − (1 − γ) v)

]
. (3.8)
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Figure 2: Equilibrium Bids of the local bidders (analytical model)

Equilibrium bidding functions from Corollary 1 are plotted in Figure 2 for γ ∈
{ 0.1, 0.5, 0.9 }. First of all, note that different core-selecting rules result in a very
different incentives depending on bidder’s type. For example, the low (high) type
bidder shades the most (least) under the proxy rule and the least (most) under the
nearest-bid rule. Intuitively, the proxy rule creates first-price incentives for the low-
type bidder and the second-price incentives for the high-type bidder. In contrast,
the nearest-bid rule essentially subsidizes the low-type bidder at the expense of the
high-type bidder, resulting in higher incentives to shade for the high-type.

As can be seen from Figure 2, an increase in correlation between values of local
bidders has a dramatic effect on the equilibrium bidding functions. Under the proxy
rule, bidders bid more competitively and, under the nearest-bid rule, bidders bid
less competitively. Meanwhile, the effect on the nearest-VCG rule is ambiguous as
low types bid more competitively and high types bid less competitively. Corollary 2
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shows that this observed effect of correlation on the pricing rules is general. For two
correlation levels, γ and γ′, denote βγ(v) and βγ′(v) the corresponding equilibrium
bidding functions for a particular pricing rule.

Corollary 2. Consider the analytical model with G(u) = u/ū. If γ ≤ γ′, then:

(a) for the proxy rule
βγ(v) ≤ βγ′(v) ∀ v ∈ [0, v̄]; (3.9)

(b) for the nearest-VCG rule, there exists ṽ ∈ (v̂(γ), v̄) such that

βγ(v) ≤ βγ′(v) ∀ v ∈ [0, ṽ],

βγ(v) ≥ βγ′(v) ∀ v ∈ [ṽ, v̄],
(3.10)

where v̂(γ) is the solution to (3.4);

(c) for the nearest-bid rule

βγ(v) ≥ βγ′(v) ∀ v ∈ [0, v̄]. (3.11)

Furthermore, we can rank equilibrium bids whenever underlying distributions
can be ranked in the first-order stochastic dominance sense. Intuitively, when the
underlying value distribution of local bidders is weaker, local bidders would bid
more competitively in the equilibrium to account for the reduced free-riding op-
portunities. For two cumulative distribution functions defined on [0, v̄], F1 and F2,
denote βF1(v) and βF2(v) the corresponding symmetric equilibrium bidding function
for local bidders for each pricing rule.

Corollary 3. Consider the analytical model with G(u) = u/ū. If F1 first-order
stochastically dominates F2, then for each pricing rule (1) – (3),

βF1(v) ≤ βF2(v) ∀ v ∈ [0, v̄]. (3.12)

3.2 Standard Model

In this section, we provide a short analysis of the standard model. In comparison
with the analytical model, the standard model presents a major analytical challenge
of dealing with a convolution of random variables since bidder i’s inference about
the common component s has to be inferred from her vi = γ s + (1− γ) zi without
observing zi, and then used to infer vj|vi = γ s|vi + (1−γ) zj. Given this challenge,
we employ numerical methods to approximate equilibria and then compare results
to the ones obtained for the analytical model.

Using numerical methods, we solve for the bidding function that approximate
optimality conditions (2.3) under the same assumptions that were used in Corollary

12



1 and Figure 2 (i.e., F (v) = v, G(u) = u/2 and γ ∈ { 0, 1, 0.5, 0.9 }). Results
are plotted in Figure 3. Note that given the difference in conditional distributions,
the bidding functions in Figure 3 may differ from the equilibrium bidding functions
obtained for the analytical model when γ ∈ (0, 1).15
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Figure 3: Equilibrium Bids of the local bidders (standard model)

Visual comparison confirms that solutions for the standard and analytical models
are qualitatively identical with one noticeable difference — kinks in bid functions for
the standard model at low and high values. The kinks are produced by the “inference
corners” that are present in the standard model, but not in the analytical model.16

We conclude that the analytical model fully captures all elements of the standard
model while simultaneously providing tractable and well-behaved equilibria.

When values of local bidders are perfectly correlated (γ = 1), there is no differ-
ence between the standard and analytical models. We analyze the case of perfect
correlation in the next section.

4 Perfect Correlation (γ = 1)

This section contains equilibrium analysis for the case of perfect correlation
between values of two local bidders. When correlation is perfect, the standard and
analytical models are identical. Also note that distribution F (.) from which the
common component is drawn has no effect on equilibria in this case.

15The quality of our numerical solutions is validated using true solutions for γ = 0. The average
absolute difference between two solutions is 4.7e− 06 for the proxy rule, 7.9e− 08 for the nearest-
VCG Rule, and 1.1e− 0.6 for the nearest-bid rule in this case.

16For example, if vi = 0, then s = 0 and the range for vj |vi is [0, (1−γ)v̄]. In contrast, the range
for vj |vi in the analytical model is always [0, v̄] as long as γ < 1. The presence of corners suggests
major difficulties in obtaining analytical equilibria in the standard model.
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Our first result shows that the symmetric equilibrium for the proxy rule (when
it exists) involves truthful bidding by all bidders. The existence of such equilibrium
for some environments is proved in Theorem 2 at the end of this section.

Proposition 2. Consider the model with perfect correlation. For the proxy rule,
the unique symmetric Bayesian-Nash equilibrium in pure strategies (when it exists)
is given by:

βProxy(v) = v ∀v ∈ [0, v̄] (4.1)

When the truthful equilibrium exists, the proxy rule delivers first-best perfor-
mance by generating fair revenues while simultaneously achieving full efficiency. Let
R denote expected seller revenue and Ef denote expected efficiency for a particular
auction.

Corollary 4. Consider the model with perfect correlation. If the symmetric equilib-
rium exists for the proxy rule, then the expected efficiency and seller revenue in the
symmetric equilibrium are compared as follows:

(a) for the truthful equilibrium of the VCG mechanism

EfProxy = EfV CG and RProxy > RV CG; (4.2)

(b) for any equilibrium of any bidder-optimal core-selecting auction that satisfies
regularity conditions and achieves Ef and R

EfProxy ≥ Ef and RProxy ≥ R. (4.3)

Next we show that the symmetric equilibrium bids for pricing rules (1) – (3) can
be ranked.

Proposition 3. Consider the model with perfect correlation and suppose that the
symmetric equilibrium exists for pricing rules (1) – (3). Then for any v ∈ (0, v̄]:

βProxy(v) > βN−V CG(v) > βN−BID(v). (4.4)

When these symmetric equilibria exist and unique, the bid ranking (4.4) implies
that the proxy rule is strictly better than the nearest-VCG rule, which in turn
is strictly better than the nearest-bid rule, in terms of both efficiency and seller
revenues.

Now we present our second main result. Theorem 2 proves that for a partic-
ular class of distributions, auctions with pricing rules (1) – (3) each has a unique
Bayesian-Nash equilibrium in pure strategies.

Theorem 2. Consider the model with perfect correlation and G(u) = (u/ū)σ where
σ > 1. For each pricing rule (1) – (3), the unique Bayesian-Nash equilibrium exists
and the equilibrium bid function (symmetric) for local bidders is given by:
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(a) for the proxy rule
β(v) = v ; (4.5)

(b) for the nearest-VCG rule

β(v) =
σ

1 + σ − 2−σ
v ; (4.6)

(c) for the nearest-bid rule

β(v) =
σ

1 + σ
v . (4.7)

Equilibria identified in Theorem 2 highlight the key distinction among considered
core-selecting rules. Parameter σ controls the distributional strength of the global
bidder in the relevant value range [0, 2 v̄]. Consider the standard single-item auction
with two bidders. If value distribution of bidder 1 is made weaker, the equilibrium
bid of bidder 2 shifts downward in the first-price auction and does not change in
the second-price auction. The same effect is observed here. Similar to a second-
price auction, the change in global bidder’s strength (change in σ) has no effect on
equilibrium bids of local bidders for the proxy rule. In contrast, σ affects equilibrium
bids for two other rules, but the effect is weaker for the nearest-VCG rule.17

Theorem 2 is limited to environments where G(u) = (u/ū)σ and σ > 1. The
comparison among various core-selecting rules and the VCG mechanism is less cer-
tain when σ ∈ (0, 1) due to existence of multiple equilibria. For example, truthful
bidding is no longer an equilibrium for the proxy rule. Instead, there are two asym-
metric pure-strategy equilibria where one local bidder bids truthfully and the other
local bidder bids zero.18 For the nearest-VCG rule, the symmetric equilibrium (4.6)
exists for any σ > 0, but fully asymmetric and partially asymmetric equilibria are
also possible. Finally, a pure-strategy equilibrium does not exist for the nearest-bid
rule. As a result, it is possible that the proxy rule performs worse than the VCG or
nearest-VCG rules under such assumptions.

There is another critique that can be made of the proxy rule.19 The existence of
the truthful equilibrium is very sensitive to the symmetry assumption. To demon-
strate this, suppose instead that the values of local bidders were perfectly correlated
but slightly asymmetric, in that v1 = v and v2 = (1 − ε) v, where v ∈ [0, v̄] and
ε > 0. In order to maintain the existence of a truthful equilibrium in this asymmet-
ric setting, the proxy rule would need to be modified such that local bidders split
the total payment in the proportions

(
1

2− ε B,
1− ε
2− ε B

)
when they win. If a symmetric

17 To see this, consider σ → 0. Then σ/(1 + σ) → 0 while σ/(1 + σ − 2−σ) → 1/(1 + ln(2)) ≈
0.59. For the nearest-bid rule, the first-price effect dominates. In contrast, the first-price effect
has limited impact on the nearest-VCG rule and dissipates for low σ.

18For the same setting, Sano (2012) reports the same fully asymmetric equilibria for a dynamic
version of the proxy rule.

19We are grateful to an anonymous referee for providing this comment.
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1
2
B, 1

2
B
)

split were used, bidder 2 would have the incentive to bid less than her
value, since her bid would bind when (2 − 2ε) v ≤ u ≤ (2 − ε) v.

5 Discussion

To illustrate the welfare properties of different pricing rules, we calculate expect-
ed seller revenue, efficiency and distance to the true core using symmetric equilibria
identified in Theorems 1 and 2. Figure 4 plots results for each pricing rule assuming
uniform distributions F (v) = v and G(u) = u/2. The expected seller revenue is
plotted as a percentage of the “fair” revenue (min{ v1 + v2, u }). Both the expected
efficiency and expected distance to the true core are plotted as a percentage of the
maximum value (max{ v1 + v2, u }).
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Figure 4: Revenue, Efficiency and Distance to True Core for F (v) = v and G(u) = u/2

While all core-selecting auctions are generally inefficient, they can generate rev-
enues that are more competitive than the VCG revenue. And significantly higher
revenues can lead to a better overall performance as measured by the distance to
the true core. Thus, in some environments there is a clear trade-off between using
the VCG mechanism and core-selecting auctions.

Several general remarks are warranted here. First, the differential effects of
correlation from Corollary 2 are clearly visible in Figure 4. The performance of the
proxy rule improves rapidly as the correlation increases due to more competitive
bidding, while the performance of the nearest-bid rule falls. Strong correlation also
hurts VCG revenues, as it puts greater emphasis on low-revenue outcomes.

Second, no general revenue rankings are available between the VCG mechanism
and the three core-selecting auctions. While the VCG rule is always efficient, any
of the considered core-selecting rules can generate higher revenues under certain
assumptions and, as a result, can also produce outcomes that are closer to the true
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core. The lack of general rankings is true even when local bidders’ values are fully
independent, the setting considered by Goeree and Lien (2016).20

Under perfect correlation, the considered core-selecting auctions can be com-
pared when they happen to have unique equilibria. In such scenarios, the equilibri-
um bids and auction performance can be strictly ranked according to Proposition 3,
based upon how much the pricing rule depends on bidders’ own bids. Most remark-
ably, the unique equilibrium of the core-selecting auction with the proxy rule for
certain distributions is associated with truthful bidding by all bidders. With truth-
ful bidding being optimal, the auction generates fair revenues without sacrificing
efficiency, and thus provides an example of a “truly” core-selecting auction.

Finally, while the proxy rule appears to dominate the nearest-VCG rule, it is
also more sensitive to the assumptions. For example, for some parameter values, it
supports fully asymmetric equilibria where one of the local bidders bids zero.

6 Conclusion

The previous literature has shown the VCG mechanism to have a variety of
shortcomings in environments with complementarities, including the possibility of
low or even zero revenues, non-monotonicity of revenues with respect to bids and
number of bidders, and vulnerability to unusual forms of collusion such as shill
bidding and collusion by losing bidders. These drawbacks may help to explain why
this auction format — despite its attractive dominant-strategy property — is seldom
used in practice. By contrast, the nearest-VCG pricing rule has been used numerous
times in recent years for high-stakes spectrum auctions.

This paper studies a stylized LLG model in an environment with private infor-
mation. Our analysis shows that in some environments, equilibrium outcomes of
core-selecting auctions can be significantly closer to the true core than the VCG
outcome. In particular, the comparison of some core-selecting auctions to the VCG
mechanism dramatically improves in the presence of positive value correlations. Fur-
thermore, we note that in important applications such as spectrum auctions, such
positive correlations are likely to be present. Thus, unlike Goeree and Lien (2016),
we conclude that there may be good reasons for policymakers to use core-selecting
auctions rather than the VCG mechanism in their applications.

One of the novel aspects of our analysis is an “analytical model” of positive
correlations. Our treatment admits simple closed-form solutions, without sacrific-
ing any of the qualitative properties of the standard approach. Another potential
application of our modeling is in economic experiments. The usual notion of val-
ue correlations expressed with equations may be overly complex for experiments,

20For example, outcomes under both the proxy rule and the nearest-VCG rule are closer to the
true core than the ones under the VCG rule for all γ ∈ [0, 1] when F (v) = v3 and G(u) = u/2.
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perhaps resulting in subjects not understanding the scenario. By contrast, the ver-
bal description of our analytical model — two values are the same with a given
probability and are drawn independently otherwise — may be easier for subjects to
understand and may thereby generate more consistent experimental results.

A Proofs

PROOF OF LEMMA 2. This follows a standard argument for the global bidder,
who always pays b1 + b2 when she wins. For a local bidder, her payment is nonde-
creasing in her own bid due to regularity conditions. Then overbidding her value
can only harm the local bidder.

PROOF OF PROPOSITION 1. The optimality condition is given by: ∂πi(bi,vi)
∂bi

=

vi φi(bi, vi)− ∂Pi(bi,vi)
∂bi

≤ 0 (with equality when bi > 0). Then equation (2.3) follows

since φi(bi, vi) =
∫
vj
f(vj|vi)g(bi+βj(vj))dvj and ∂Pi(bi,vi)

∂bi
= MPi(bi, vi)+bi φi(bi, vi)

due to regularity conditions and the pivotal pricing property which ensures that
pi(bi, βj(vj), bi + βj(vj)) = bi.

PROOF OF THEOREM 1. By Proposition 1, the first-order conditions are given
by (2.3). For all pricing rules, φi(bi, vi) = 1/ū. Local bidder j follows strategy
βj(vj) ≤ vj which is strictly increasing on interval [v̂, v̄] and is equal to zero on [0, v̂]
where v̂ ≥ 0. (a): For the proxy rule,

MPi(bi, vi)

φi(bi, vi)
=


γ[βj(vi)− bi] + (1− γ)

v̄∫
min(β−1

j (bi))

[βj(vj)− bi]f(vj)dvj if bi < βj(vi)

(1− γ)
v̄∫

β−1
j (bi)

[βj(vj)− bi]f(vj)dvj if bi ≥ βj(vi)

Then the best-response of bidder i is to bid zero when vi ≤ γβj(vi)+(1−γ)E[βj(vj)]
and bid a positive amount for larger vi. In the symmetric equilibrium, β(v) = 0 for
v ≤ v̂ and β(v) = β̃(v) for v > v̂ where v̂ = (1 − γ)E[β(v)] and v − β̃(v) ≡ (1 −
γ)
[∫ v̄

v
β̃(vj)f(vj)dvj − β̃(v)(1− F (v))

]
for all v ∈ [v̂, v̄] which is equivalent to (3.2).

(b): For the nearest-VCG rule, MPi(bi,vi)
φi(bi,vi)

= γ
2
βj(vi) + 1−γ

2

∫ v̄
0
βj(vj)f(vj)dvj. Then

the best-response of bidder i is to bid zero when vi ≤ 0.5[γβj(vi) + (1− γ)E[βj(vj)]]
and bid a positive amount for larger vi. In the symmetric equilibrium, β(v) = 0 for
v ≤ v̂ and β(v) = β̃(v) for v > v̂ where v̂ = 0.5(1 − γ)E[β(v)] and v − β̃(v) ≡
1
2

[
γβ̃(v) + (1 − γ)E[β̃(vj)]

]
for all v ∈ [v̂, v̄]. It follows that β̃′(v) = 2

2+γ
and

β̃(v) = 2
2+γ

(v − v̂) on the interval [v̂, v̄] where v̂ = 1−γ
2+γ

∫ v̄
v̂

(vj − v̂)f(vj)dvj which is

equivalent to (3.4). The equation has a unique solution v̂ on (0, v̄) which is strictly
decreasing with γ. (c): For the nearest-bid rule,
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MPi(bi, vi)

φi(bi, vi)
=


γbi + (1− γ)

β−1
j (bi)∫

0

βj(vj)f(vj)dvj +
v̄∫

β−1
j (bi)

bif(vj)dvj

 if bi < βj(vi)

γβj(vi) + (1− γ)

β−1
j (bi)∫

0

βj(vj)f(vj)dvj +
v̄∫

β−1
j (bi)

bif(vj)dvj

 if bi ≥ βj(vi)

Then the best response of bidder i is to bid bi > 0 for any vi ∈ (0, v̄). In the sym-
metric equilibrium, v− β(v) ≡ γβ(v) + (1− γ)

[∫ v
0
β(vj)f(vj)dvj + β(v)(1− F (v))

]
for all v ∈ [0, v̄] which is equivalent to (3.5).

PROOF OF COROLLARY 2. (a): For the proxy rule, βγ(v) ≤ βγ′(v) for all v ∈
[0, v̄] follows since β̃γ(v̄) = β̃γ′(v̄) and β̃′γ(v) ≥ β̃′γ′(v). (b): For the nearest-VCG
rule, v̂(γ) is strictly decreasing function. Due to linearity of the bidding function
with slope 2

2+γ
, βγ(v) ≤ βγ′(v) for v ∈ [0, ṽ] and βγ(v) ≥ βγ′(v) for v ∈ [ṽ, v̄] where

ṽ ∈ (v̂(γ), v̄]. If ṽ = v̄, then MP γ
i (bi, v̄) < MP γ′

i (bi, v̄) and the best-response of
bidder i with vi = v̄ should drop under γ′ which is a contradiction. It follows that
ṽ ∈ (v̂(γ), v̄). (c): For the nearest-bid rule, βγ(v) ≥ βγ′(v) for all v ∈ [0, v̄] follows
since βγ(0) = βγ′(0) and β′γ(v) ≥ β′γ′(v).

PROOF OF COROLLARY 3. (a): For the proxy rule, βF1(v) ≤ βF2(v) for all v ∈
[0, v̄] follows since β̃F1(v̄) = β̃F2(v̄) and β̃′F1

(v) ≥ β̃′F2
(v). (b): For the nearest-

VCG rule, βF1(v) ≤ βF2(v) for all v ∈ [0, v̄] follows since v̂F2 ≤ v̂F1 . (c): For the
nearest-bid rule, βF1(v) ≤ βF2(v) for all v ∈ [0, v̄] follows since βF1(0) = βF2(0) and
β′F1

(v) ≤ β′F2
(v).

PROOF OF PROPOSITION 2. For the proxy rule, the expected marginal payment
of bidder i is MPi(bi, v) = G(βj(v)+bi)−G(2bi) when bi ≤ βj(v) and MPi(bi, v) = 0
when bi > βj(v). If a symmetric equilibrium exists, MPi(β(vi), vi) = 0. But then
β(v) = v by Proposition 1 since β(v) > 0 for any v > 0.

PROOF OF PROPOSITION 3. In a symmetric equilibrium, β(v) > 0 for any
v > 0. Then (vi − β(vi))g(2β(vi)) = MPi(β(vi), vi) for all pricing rules. Then
(4.4) follows since MP Proxy

i (β(vi), vi) = 0, strictly less than MPN−V CG
i (β(vi), vi) =

1/2[G(2β(v)) − G(β(v))] which is in turn strictly less than MPN−BID
i (β(vi), vi) =

1/2[G(2β(v))].

PROOF OF THEOREM 2. By Proposition 1, the first-order conditions are given
by (2.3). For all pricing rules, φi(bi, vi) = g(bi + β(vi)). In a symmetric equilibrium,
β(v) > 0 for any v > 0. (a): For the proxy rule, the expected marginal payment of
bidder i is MPi(bi, v) = G(βj(v) + bi)−G(2bi) when bi ≤ βj(v) and MPi(bi, v) = 0
when bi > βj(v). In a symmetric equilibrium β(v) = v by Proposition 2. In an
asymmetric equilibrium where βi(v) < βj(v), bider j must be bidding truthfully. If
βj(v) = v, then the best response of bidder i is to bid bi = v since (v−bi) g(v+bi) ≥
G(v + bi) − G(2bi) (with a strict sign for all bi < v) for all bi ∈ [0, v]. The last
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inequality follows for G(u) = (u/ū)σ since it is equivalent to h(x) = xσ+σ(1−x) ≥ 1
where x = 2bi

v+bi
∈ [0, 1]. It is satisfied if and only if σ > 1 since h(0) = σ, h(1) = 1

and h′(x) < 0 for all x ∈ [0, 1). (b): For the nearest-VCG rule, the expected
marginal payment of bidder i is given by MPi(bi, v) = 1

2

[
G(βj(v) + bi)−G(bi)

]
. A

fully asymmetric equilibrium cannot exist for σ > 1 since 2vg(v) > G(v). For a
partially asymmetric equilibrium where bj(v) = x βi(v) with x ∈ (0, 1) and G(u) =
(u/ū)σ, according to the first-order conditions (2.3),

βi(v) =
2σ

2σ + 1 + x− (1 + x)(1−σ)
v βj(v) =

2σ x

2σ + 1 + x− (1 + x)(1−σ)
v

where 2σ (1 − x) = (1 + x)(1−σ)(1 − xσ). It can be shown that the above system
of equations does not admit solutions such that x < 1 for σ ≥ 1. The symmetric
equilibrium is given by β(v) = σ

1+σ−2−σ
v (plug x = 1). This equilibrium exists when

2σ(v − bi) ≥ Ψ(bi) for all bi ∈ [0, β(v)] and 2σ(v − bi) ≤ Ψ(bi) for all bi ∈ [β(v), v]

where Ψ(bi) = (bi + β(v)) − bσi
(β(v)+bi)σ−1 . For σ ≥ 1, Ψ′′(bi) ≤ 0. Then Ψ′(bi) is

a decreasing function that is positive at bi = v, implying that Ψ′(bi) ≥ 0 for all
bi ∈ [0, v]. Then Ψ(bi) is increasing on [0, v] and the symmetric equilibrium exists.
(c): For the nearest-bid rule, the expected marginal payment of bidder i is given
by

MPi(bi, v) =

{
1
2

[
G(βj(v) + bi)−G(βj(v)− bi)

]
if 0 ≤ bi ≤ βj(v)

1
2

[
G(βj(v) + bi)−G(bi − βj(v))

]
if βj(v) < bi

Note that bi = 0 is never a best response when v > 0 since then MPi(0, v) = 0
and vg(β(v) + v) > 0. Now suppose that 0 < βj(v) < βi(v). Then MPi(βi(v), v) =
MPj(βj(v), v) and βj(v) = βi(v) by first-order conditions (2.3). Thus, there are no
asymmetric equilibria for this payment rule. In a symmetric equilibrium bi = β(v)
and MPi(β(vi), v) = G(2β(v))/2. Then, for G(u) = (u/ū)σ, according to the first-
order conditions (2.3), β(v) = σ

1+σ
v. This equilibrium exists when 2σ(v − bi) ≥

Ψ(bi) for all bi ∈ [0, β(v)] and 2σ(v − bi) ≤ Ψ(bi) for all bi ∈ [β(v), v] where Ψ(bi) =

(bi + β(v))− (β(v)− bi)
[
β(v)−bi
β(v)+bi

]σ−1

. The first inequality is satisfied for any σ > 0

since the left-hand side is strictly decreasing, the right-hand side is strictly increasing
and the inequality is still satisfied at bi = β(v). The second inequality is satisfied
for σ ≥ 1.
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