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Vickrey Auctions with Reserve Pricing
Lawrence M. Ausubel and Peter Cramton

1 Introduction

A Vickrey auction has the distinct advantage of assigning goods efficiently—putting the goods in the

hands of those who value them most. However, one critique of a Vickrey auction is that it may yield low

revenues for the seller. Indeed, Vickrey expressed this concern in his seminal paper (Vickrey 1961).

When competition is weak and the bidders are asymmetric, revenues from a Vickrey auction may be

small. A vivid example was the 1990 New Zealand sale of spectrum licenses by second-price auction. In

one case, the winner bid $100,000, but paid only $6; in another, the winner bid $7,000,000, but paid only

$5,000 (McMillan 1994). Reserve pricing is a simple and effective device to avoid such disasters. The

seller restricts the quantity sold if the bids are too low, and charges reserve prices in other cases. Reserve

pricing is also an effective device for mitigating collusion.

Reserve pricing is especially important in auctions, such as electricity auctions, spectrum auctions, or

treasury auctions, where participants bid for multiple items. Then the largest market participant may be so

large that removing this bidder may lead to no excess demand. In a Vickrey auction, prices are based on

the opportunity cost of winning; that is, a winner pays the value that the goods would have in their best

use without the winner. If a bidder’s winnings are greater than the excess demand in the auction with the

bidder removed, then some of the Vickrey prices are undefined. In auctions to supply electricity during

peak periods, it is common for the capacity of the largest generator to be far greater than the excess

capacity in the system. In such a setting, a Vickrey auction must involve reserve pricing.

We generalize the Vickrey auction to allow for reserve pricing in a multiple item auction with

interdependent values. In the Vickrey auction with reserve pricing, the seller determines the quantity to be

made available as a function of the bidders’ private information, and then efficiently allocates this

quantity among the bidders. Truthful bidding is a dominant strategy with private values (a bidder’s value

depends only on its own private information) and an ex post equilibrium with interdependent values (a

bidder’s value also depends on the private information of other bidders). Reserve pricing does not damage

the desirable features of a Vickrey auction.

An important motivation for assigning goods efficiently is the possibility of resale (Ausubel and

Cramton 1999). Although in an optimal auction the seller typically has an incentive to misassign goods,

this incentive is undermined when the seller cannot prevent resale. Bidders anticipate the resale market

and adjust their bids accordingly. Here we show that in an auction followed by resale, truthful bidding



3

remains an ex post equilibrium in the auction-plus-resale game, so long as the resale game satisfies a

natural extension of individual rationality.

 When resale markets are perfect, so that all gains from trade among the bidders are exhausted in the

resale market, then an upper bound on seller revenues is given by the resale-constrained auction program

(Ausubel and Cramton 1999). In this program, the seller can withhold quantity, but is constrained to

assign efficiently the quantity sold. Here we show that the Vickrey auction with reserve pricing attains the

upper bound on payoffs given by the resale-constrained auction program. Faced with a perfect resale

market, the Vickrey auction with reserve pricing maximizes seller revenues.

This paper is related to two strands of literature. First, a number of papers extend the Vickrey auction

to settings where bidders have interdependent values. Maskin (1992) defined a modified second-price

auction, which yields an efficient outcome in a single-good setting with interdependent values. Ausubel

(1997, Appendix B) extends Maskin's approach by defining a “generalized Vickrey auction” for multiple

identical items with interdependent values. Dasgupta and Maskin (1998), and more recently, Perry and Reny

(1998), also define an auction mechanism that, for the case of multiple identical objects, is outcome-

equivalent to the generalized Vickrey auction. None of these papers explore reserve pricing or the

implications of resale markets.

The second strand of literature considers multiple unit auctions with variable supply. Back and Zender

(1999) show that in a uniform-price auction the seller can eliminate low-price equilibria (Back and Zender

1993) by restricting supply after the bids are in. Lengwiler (1999), in a model allowing two possible price

levels, considers the effects of variable supply on seller revenues in both uniform-price and pay-your-bid

auctions. Neither of these papers consider Vickrey pricing or resale.

Section 2 presents a general model for the auction of a divisible good. Bidders’ demands for the items

may be interdependent. Section 3 defines the Vickrey auction with reserve pricing, and demonstrates that

truthful bidding is an equilibrium, despite the fact that the bidding affects the quantity sold. Section 4

analyzes an auction followed by resale. It is shown that the possibility of resale does not distort the Vickrey

auction with reserve pricing. Truthful bidding remains an equilibrium, despite the presence of a resale

market following the auction. Section 5 concludes.

2 The General Divisible Good Model

A seller has a quantity 1 of a divisible good to sell to n bidders, N ≡ {1,…,n}. The seller’s valuation for

the good equals zero. Each bidder i can consume any quantity qi ∈ [0,1]. We can interpret qi as bidder i’s

share of the total quantity. Let q ≡ (q1,…,qn), and let Q ≡ {q | ∑i qi ≤ 1} be the set of all feasible

assignments. Each bidder’s value for the good depends on the private information of all the bidders. Let
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ti ∈ Ti ≡ [0,ti
max] be bidder i’s type (i’s private information), t ≡ (t1,…,tn) ∈ T ≡ T1×⋅⋅⋅×Tn, and t−i ≡ t ~ ti. A

bidder’s value Vi(t,qi) for the quantity qi depends on its own type ti, the other bidders’ types t−i. A bidder’s

utility is its value less the amount it pays: Vi(t,qi) − Xi. Let vi(t,qi) denote the marginal value for bidder i,

given the vector t of types and quantity qi. Then 
0

( , ) ( , ) .
iq

i i iV t q v t y dy= ∫

We assume that vi(t,qi) satisfies the following assumptions:

Continuity. For all i, t, and qi, vi(t,qi) is jointly continuous in (t,qi).

Value monotonicity. For all i, ti, and qi, vi(t,qi) ≥ 0, vi(t,qi) is strictly increasing in ti, vi(t,qi) is weakly

increasing in tj (j ≠ i), and vi(t,qi) is weakly decreasing in qi.

Value regularity. For all i, j, qi, qj, t−i, and ti′ > ti, vi(t,qi) > vj(t,qj) ⇒ vi(ti′,t−i,qi) > vj(ti′,t−i,qj) and

vi(ti′,t−i,qi) < vj(ti′,t−i,qj) ⇒ vi(t,qi) < vj(t,qj).

Value monotonicity implies that types are naturally ordered, and that the bidders have weakly

downward-sloping demand curves. Value regularity implies that if a fixed quantity is assigned efficiently

among the bidders that bidder i’s quantity qi(t) may be chosen to be weakly increasing in ti. Value

regularity holds if an increase in bidder i’s type raises i’s marginal value at least as much as that of any

other bidder.

Three special cases of the general model are useful.

PRIVATE VALUES. A bidder’s value Vi(ti,qi) only depends on its own type.

COMMON VALUE. The bidders’ values are the same: Vi(t,qi) = Vj(t,qi).

INDEPENDENT TYPES. The bidders’ types are drawn independently from the distribution functions Fi

with positive and finite density fi on Ti.

The private values assumption enables us to strengthen many of the results. In particular, truthful

bidding becomes a dominant strategy, rather than simply a best response. Also, value monotonicity

automatically implies value regularity in the private value setting.

The common value assumption often is made in models of oil lease auctions and in models of

Treasury and other financial auctions.

Independent types is needed in the optimal auction analysis (our final result). Expected revenues

depend on the probability distribution of types, and independence is needed for a general revenue

equivalence theorem. However, most of our analysis is based on “ex post” arguments, which do not

require any assumptions about the distribution of types.
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Our starting point for describing a Vickrey auction with reserve pricing is to specify the aggregate

quantity ( ) ( )i iq t q t≡ Σ  that the seller assigns to the bidders, as a function of the vector of reported types.

The description of the Vickrey auction is only guaranteed to make sense if the aggregate quantity ( )q t  is

weakly increasing. We therefore require

Monotonic aggregate quantity. The aggregate quantity ( )q t is a weakly increasing in each bidder’s

type.

This assumption, together with value regularity, guarantees that the quantity ( )q t can be assigned

efficiently among the bidders in such a way that bidder i’s quantity qi(t) is weakly increasing in ti.

3 Vickrey Auction with Reserve Pricing

The Vickrey auction with reserve pricing can be thought of as a three-step procedure. First, the

bidders simultaneously and independently report their types t to the seller, and the seller determines the

aggregate quantity ( )q t  that it wishes to assign to bidders. Second, the seller determines an efficient

assignment of this aggregate quantity; that is, the seller solves for * * *
1( ) ( ( ), , ( ))nq t q t q t≡ L that maximizes

*( , ( ))i i iV t q tΣ  subject to *( ) ( ).i iq t q tΣ =  When the efficient assignment is not unique due to flat regions in

the aggregate demand curve, * ( )iq t  is chosen so that it is weakly increasing in ti. Third, the seller

determines a payment *( )iX t for each bidder i associated with the assignment of *( ),iq t  where * ( )iq t  and

*( )iX t  must be specified so that sincere bidding is incentive compatible and individually rational for every

type of every bidder.

The determination of the payment rule is most easily understood in an environment with discrete

units. Hold the reports t−i of bidders other than bidder i fixed, and consider the quantity *( , )i i iq t t−  assigned

to i as a function of ti. Let 1
it denote the minimum type such that i is awarded at least one unit

( * 1( , ) 1i i iq t t− ≥ ), let 2
it  denote the minimum type such that i is awarded at least two units ( * 2( , ) 2i i iq t t− ≥ ),

and let k
it denote the minimum type such that i is awarded at least k units ( *( , )k

i i iq t t k− ≥ ). By hypothesis,

( )q t  is weakly increasing. Therefore, by value monotonicity and value regularity, 1k k
i it t +≤  for all k ≥ 1.

Discrete payment rule. If bidder i is assigned K units, then for every k (1 ≤ k ≤ K), bidder i is charged

a price of ( , , )k
i i iv t t k−  for the kth unit.

Vickrey pricing is best thought of in terms of opportunity costs. The winner pays the opportunity cost

of its winnings. In a standard Vickrey auction, the opportunity cost is always the value to the other bidder
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that would receive the good if the winner did not participate. In a Vickrey auction with reserve pricing, the

opportunity cost can come instead from the seller. This occurs for a good that the seller would withhold

were it not for the winner’s bids. Critical to the analysis, observe that bidder i’s value is evaluated at the

minimal type at which i receives the kth unit. This specification has the effect of subsuming the proper

pricing rule both for the case where the kth unit of bidder i comes from another bidder as well as for the case

where the kth unit of bidder i comes from the seller’s reserve. If the kth unit for bidder i is assigned to bidder i

from another bidder j, then bidder i is charged the other bidder’s value ( , , )k
j i i jv t t q− , assuming i’s type is

just high enough to receive k units, as by definition, k
it  is the minimal type of bidder i such that bidder i

receives this unit, so ( , , ) ( , , ).k k
i i i j i i jv t t k v t t q− −=  Meanwhile, if the kth unit for bidder i is assigned to bidder i

out of the seller’s reserve, then the seller’s implicit “reserve price” for this unit equals ( , , ),k
i i iv t t k−  since all

types of bidder i greater than k
it  are receiving this unit while all types of bidder i less than k

it  are not.

Returning to the case of continuous quantity, let * *( ) ( ) ( )i iq t q t q t− ≡ −  denote the aggregate quantity

allocated to bidders other than i (bidders −i) following reports t. Furthermore, for any quantity y, let

v−i(t,y) denote the marginal value to bidders −i if the quantity y is allocated efficiently among bidders −i.

Observe that, for any aggregate assignment rule ( )q t  and for any reports t, an efficient assignment rule

q*(t) satisfies

* *

* * *

* *

( , ( )),  for  such that ( ) 0
( , ( )) ( , ( )),  for  such that 0 ( ) ( )

( , ( )),  for  such that ( ) ( ).

i i i

i i i i i

i i i

v t q t i q t
v t q t v t q t i q t q t

v t q t i q t q t

− −

− −

− −

≤ =
= < <
≥ =

(1)

Otherwise, from continuity and value monotonicity, if *0 ( ) ( )iq t q t< <  and * *( , ( )) ( , ( )),i i i iv t q t v t q t− −>  then

there exists ε > 0 such that allocating *( )iq t ε+  to bidder i and * ( )iq t ε− −  to bidders −i would generate

social improvement, and similarly if * *( , ( )) ( , ( )).i i i iv t q t v t q t− −<

From Eq. (1) and value regularity, for any monotonic aggregate quantity ( )q t , there exists an

efficient assignment * ( )iq t  that is weakly increasing in ti. To see this note that value regularity implies

that, in an efficient assignment, any quantity that must go to i when ti is reported must still go to i when

ti′ > ti is reported, and any quantity that cannot go to i when ti′ > ti is reported still cannot go to i when ti is

reported. This would guarantee that if aggregate demand were strictly downward sloping, then * ( )iq t

would be uniquely defined, and it would be weakly increasing in ti. However, when the aggregate demand

curve has a flat region and the flat portion includes more than one bidder, then * ( )iq t  is no longer unique,
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and indeed some efficient assignment rules may not be monotonic. In this case, the seller must choose a

tie-breaking rule that is consistent with a monotonic efficient assignment. For example, in the flat portion

of aggregate demand, award the good first to the bidder with the higher type, and split the quantity

equally among bidders with the same type.

Also observe that, although q (t) is monotonic, q (t) need not be continuous in ti, so it is useful to

define limits of q (t) from above and below in ti:

 
ˆ ˆ

ˆ ˆ( , ) lim ( , ) and ( , ) lim ( , ).
i i i i

i i i i i i i i i it t t t
q t t q t t q t t q t t+ −

− − − −↓ ↑
= =

We can now define the generalized Vickrey auction with reserve pricing.

Vickrey auction with reserve pricing. Given an efficient assignment rule q*(t), and for reports t−i of

bidders other than bidder i and for any quantity z such that 0 ≤ z ≤ * max( , ),i i iq t t−  define

{ }*ˆ ( , ) inf | ( , ) .
i

i i i i i it
t t z t q t t z− −= ≥ (2)

Following reports t, bidder i is assigned * ( )iq t  units and is charged a payment *( )iX t  computed by

* ( )*

0
ˆ( ) ( ( , ), , ) .

iq t

i i i i iX t v t t z t z dz− −= ∫ (3)

We have the following results:

THEOREM 1. For any monotonic aggregate assignment rule ( )q t and associated monotonic efficient

assignment * ( )iq t , for any valuation functions vi(t,qi) satisfying continuity, value monotonicity and value

regularity, the Vickrey auction with reserve pricing has sincere bidding as a best response to all other

bidders bidding sincerely.

PROOF. By continuity, value monotonicity and value regularity, we can chose * ( )iq t  to be weakly

increasing in ti. Then ˆ ( , )i it t z−  defined by Eq. (2) is weakly increasing in z. Substituting Eq. (3) into the

expression, Vi(t,qi) − Xi, for bidder i’s utility yields the following integral for bidder i’s utility from

reporting its type as ti′ when its true type is ti and the other bidders’ true and reported types are t−i:

* ( , )

0
ˆ( | ) ( , ) ( ( , ), , ) .

i i iq t t

i i i i i i iU t t v t z v t t z t z dz
′

−

− −
′  = − ∫ (4)

Observe that the integrand of Eq. (4) is independent of ti′, bidder i’s reported type; ti′ enters into Eq. (4)

only through the upper limit on the integral. Moreover, by value monotonicity, the integrand of Eq. (4) is
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nonnegative for all z ≤ * ( )iq t  and is nonpositive for all z ≥ * ( )iq t . Hence, Ui(ti′ | t) is maximized when the

upper limit on the integral equals * ( )iq t , which is attained by sincere bidding. n

For the special case of private values, sincere bidding is a dominant strategy. Then sincere bidding is

a best response for any reports by the other bidders. Without private values, the dominant strategy result

is lost, since a bidder’s value depends on the types of the other bidders, and so the bidder cares whether

the reports of the others are truthful. Sincere bidding is only a best response if the other bidders are

truthful.

4 Auction followed by Resale

A main motivation for assigning goods efficiently is the possibility of resale (Ausubel and Cramton

1999). Resale undermines the seller’s incentive to misassign the goods, since the misassignment may be

undone in the resale market. The bidders anticipate the possibility of resale, which alters their incentives

and distorts the bidding in the initial auction. Hence, an equilibrium in the auction game is typically not

an equilibrium in the auction-plus-resale game.

Here we wish to show that a Vickrey auction with reserve pricing is not distorted by the possibility

of resale. To prove this, we need to show that a bidder i with type ti does not wish to misreport type ti′ in a

Vickrey auction with reserve pricing followed by resale. Let ∆i(ti′ | t) denote the optimal quantity of resale

between bidder i and the coalition N ~ i if bidder i misreports its type as ti′ when its true type is ti and the

other bidders’ true and reported types are t−i, and let GFTi(ti′ | t) denote the gains from trade available via

resale between bidder i and the coalition N ~ i if bidder i misreports its type as ti′ when its true type is ti

and the other bidders’ true and reported types are t−i.

LEMMA 1. If bidder i misreports its type as ti′ when its true type is ti and the other bidders’ true and

reported types are t−i, the (minimum) optimal quantity of resale between bidder i and the coalition N ~ i is

given by

* *

* *

min{ 0 | ( , ( , ) ) ( , ( , ) )}, if ,
( | )

min{ 0 | ( , ( , ) ) ( , ( , ) )}, if ,

i i i i i i i i i i
i i

i i i i i i i i i i

z v t q t t z v t q t t z t t
t t

z v t q t t z v t q t t z t t

− − − −

− − − −

 ′ ′ ′≥ + ≤ − >′∆ = 
′ ′ ′ ≥ + ≤ − <

(5)

and the gains from trade available via resale between bidder i and the coalition N ~ i are given by

( | ) * *

0
GFT ( | ) ( , ( , ) ) ( , ( , ) ) ,

i it t

i i i i i i i i i it t v t q t t z v t q t t z dz
′∆

− − − −
 ′ ′ ′= + − −  ∫ (6)
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PROOF. Observe that the integrand of Eq. (6) gives the marginal gains of the zth unit transferred from

coalition N ~ i to bidder i. By value monotonicity, if z′ < z, then * *( , ( , ) ) ( , ( , ) )i i i i i ii iv t q t t z v t q t t z− − −−
′ ′+ > −

implies * *( , ( , ) ) ( , ( , ) )i i i i i ii iv t q t t z v t q t t z− − −−
′ ′′ ′+ > −  and * *( , ( , ) ) ( , ( , ) )i i i i i ii iv t q t t z v t q t t z− − −−

′ ′+ > −  implies

* *( , ( , ) ) ( , ( , ) )i i i i i ii iv t q t t z v t q t t z− − −−
′ ′′ ′+ > − . Thus, ∆i(ti′ | t) defined by Eq. (5) provides the (minimal) upper

limit for the integral in Eq. (6) which maximizes the value of the integral. n

The following calculation will be helpful in what follows:

LEMMA 2. For any monotonic aggregate assignment rule ( )q t  and associated monotonic efficient

assignment * ( )iq t , for any valuation functions vi(t,qi) satisfying continuity, value monotonicity and value

regularity, for any bidder i, for any true type ti, for any overreport ti′ > ti, for any vector t−i of other

bidders’ reported and true types, and for any z such that 0 ≤ z ≤ ∆i(ti′ | t),

* * *ˆ( , ( , ) ) ( ( , ( , ) ) , , ( , ) ).i i i i i i i i i i i i i iv t q t t z v t t q t t z t q t t z− − − − − − −
′ ′ ′+ ≤ − − (7)

PROOF. Consider any z such that 0 ≤ z ≤ ∆i(ti′ | t), and define *ˆ ˆ ( , ( , ) ) .z
i i i i i i it t t q t t z t− −

′≡ − ≥  By the

definition of ˆ ,z
it  for every ˆ ,z

i it t>%  it is the case that * *( , ) ( , ) ;i i i i i iq t t q t t z− −
′≥ −%  therefore,

* *( , , ( , ) ( , ) ) ( , , ( , ) ),i i i i i i i i i i i i i iv t t q t t q t t z v t t q t t z− − − − − −
′ ′− + ≤ −% % %  for every ˆ ,z

i it t>%  and so taking the limit as

ˆz
i it t↓%  implies that * *ˆ ˆ ˆ( , , ( , ) ( , ) ) ( , , ( , ) ).z z z

i i i i i i i i i i i i i iv t t q t t q t t z v t t q t t z+
− − − − − −

′ ′− + ≤ −  Note that

* * *ˆ ˆ( , ( , ) ) ( , ( , ) ( , ) ) ( , , ( , ) ( , ) ),z z
i i i i i i i i i i i i i i i i i iv t q t t z v t q t t q t t z v t t q t t q t t z+

− − − − − − − − − −
′ ′ ′ ′+ ≡ − + ≤ − +  since ˆz

i it t ′≤

implies ˆ( , ) ( , ),z
i i i iq t t q t t+

− −
′ ≥  and since ˆ .z

i it t≥  Combining inequalities, we conclude that

* *ˆ( , ( , ) ) ( , , ( , ) ),z
i i i i i i i i i iv t q t t z v t t q t t z− − − − −

′ ′+ ≤ −  as desired. n

To prove our main theorem, we need some structure on the resale game. In particular, we need a

constraint on how much a misreporting bidder can gain in the resale game. With two bidders, individual

rationality is all that is required. A bidder cannot get in the resale game a surplus that is greater than the

available gains from trade, for to do so the other bidder would have to strictly lose from resale. In this

case, the other bidder would simply refuse to participate in resale. With more than two bidders and

interdependent values, we must extend the definition of individual rationality. This is because one

bidder’s misreport in the auction may create gains from trade among the other bidders. These other

bidders, then, should consider the gains from trade they can secure among themselves in deciding whether

to participate in resale with the misreporting bidder.



10

Coalitional Rationality. For any initial allocation a of units among bidders, for any vector t of types

and for any subset S of the set N of bidders, let v(S | a,t) denote the available gains from trade if the

bidders in subset S trade only amongst themselves (starting at allocation a and evaluated at types t).

Further, let si denote the surplus from the resale process realized by bidder i. The resale process is

coalitionally rational if, for every subset S of the set N of bidders, the bidders in subset S obtain no more

surplus si than they bring to the table:

( | , ) ( ~ | , ).i
i S

s v N a t v N S a t
∈

≤ −∑ (8)

The resale process is coalitionally-rational against individual bidders if, for every element i of the set N

of bidders, bidder i obtains no more surplus si than it brings to the table:

( | , ) ( ~ | , ).is v N a t v N i a t≤ − (9)

The intuition behind this assumption is that, in the bargaining process underlying resale, the bidders

in coalition S always have the outside option of excluding the bidders in the complementary set, N ~ S,

from the bargaining and only trading amongst themselves. Hence, the bidders in N ~ S cannot deprive the

bidders in S of the gains from trade that they could still obtain by trading amongst themselves.

We should remark that the assumption of coalitional rationality is quite natural and quite weak. It is

implied, for example, by the requirement in the definition of the core that no coalition can improve upon

an allocation. All we will need for our resale theorem is the still-weaker assumption of coalitional

rationality against individual bidders. This is the requirement that any individual bidder i not receive any

higher payoff than its marginal contribution to the set N ~ i of bidders. Observe that this is trivially

implied by coalitional rationality. With superadditive values (which is always the case when value reflects

potential gains from trade), it is also satisfied by standard solution concepts such as the Shapley value,

which has every bidder i receiving its expected marginal contribution to the set S of bidders (the

expectation taken over all subsets S ⊆ N ~ i).

In the private values case, the definition of coalitional rationality reduces to individual rationality.

With private values, if all bidders except bidder i report truthfully in the auction, then observe that in the

resale round, v(N ~ i) = 0, since the objects distributed to the coalition N ~ i are already assigned

efficiently. Thus, coalitional rationality implies si ≤ v(N | a,t), which is individual rationality.

We now can prove our main theorem.

THEOREM 2. For any monotonic aggregate assignment rule ( )q t  and associated monotonic efficient

assignment * ( )iq t , and for any valuation functions vi(t,qi) satisfying continuity, value monotonicity and
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value regularity, sincere bidding followed by no resale is an ex post equilibrium of the two-stage game

consisting of the Vickrey auction with reserve pricing followed by any resale process that is coalitionally-

rational against individual bidders.

PROOF. Let πi(ti′|t) denote the combined payoff to bidder i in the Vickrey auction and the resale

market from misreporting ti′, when its true type is ti and the other bidders’ reported and true types are t−i.

By coalitional rationality against individual bidders, πi(ti′ | t) ≤ Ui(ti′ | t) + GFTi(ti′ | t), since GFTi(ti′ | t) is

defined to be the gains from trade available via resale between bidder i and the coalition N ~ i. By Eqs.

(4) and (6),
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∫

∫
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.
i it t

dz
′∆

∫
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Since *ˆ ( , ( , ) ),i i i i i it t t q t t z− −
′≤ −  for all z between 0 and * *( , ) ( )i i i iq t t q t−

′ − , the second integrand of Eq. (10)

is weakly negative. Since * *0 ( | ) ( , ) ( ),i i i i i it t q t t q t−
′ ′≤ ∆ ≤ −  we further have:
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(11)

But, then, using Eq. (4), we can simplify this as

( | ) * * *

0
ˆ( | ) ( | ) ( , ( , ) ) ( ( , ( , ) ), , ( , ) ) .

i it t

i i i i i i i i i i i i i i i i i it t U t t v t q t t z v t t q t t z t q t t z dzπ
′∆

− − − − − − −
 ′ ′ ′ ′≤ + + − − −  ∫ (12)

Finally, observe by Lemma 2 that the integrand of Eq. (12) is nonpositive for all z such that

0 ≤ z ≤ ∆i(ti′ | t); consequently the integral is nonpositive whenever ∆i(ti′ | t) ≥ 0. By value regularity and

the monotonicity of ( )q t , ti′ > ti implies ∆i(ti′ | t) ≥ 0. This allows us to conclude that πi(ti′ | t) ≤ Ui(ti | t),

for all ti′ > ti, and for all t−i. Analogous reasoning applies for all underreports ti′ < ti. n

Finally, consider the problem of a seller that seeks to maximize revenues, but cannot prevent resale.

Ausubel and Cramton (1999) show that a seller faced with a perfect resale market cannot gain by

misassigning goods. The best the seller can hope to do is to assign the goods efficiently, perhaps
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withholding quantity. This result requires independent types, so that the optimal auction program is well

specified and a general revenue equivalence theorem holds.

 Theorem 2 states that any monotonic aggregate assignment rule, and associated monotonic efficient

assignment, can be implemented with a Vickrey auction with reserve pricing. This suggests that a

revenue-maximizing seller then can optimize over all monotonic aggregate assignments to attain the

upper bound on revenues given by the resale-constrained auction program in Ausubel and Cramton

(1999). Indeed, this is the case provided the Vickrey auction with reserve pricing holds the lowest type

(ti = 0) of every bidder to a payoff of zero. To see this, note that ˆ ( , ) 0i it t y− = for all t−i and

*[0, (0, )],i iy q t−∈  so that the lowest type’s payment * (0, )i iX t−  is exactly equal to the value it gets from

*(0, ).i iq t−  Hence, we have

COROLLARY. With independent types, the Vickrey auction with reserve pricing attains the upper

bound on revenues in the resale-constrained auction program.

5 Conclusion

A Vickrey auction with reserve pricing has two main advantages. First, it assigns goods efficiently.

Efficiency is important in auction markets with resale, since the revenue benefits from misassignment are

undermined by resale. Second, it allows the seller to withhold supply and set reserve prices to improve

revenues. The use of reserve prices is especially important when competition is weak and the bidders are

asymmetric. It is also important in auctions of multiple identical items, where one or more of the bidders

purchases a significant share of the goods.

We have extended the Vickrey auction to include reserve pricing in a multiple item setting with

interdependent values. Truthful bidding remains an equilibrium despite the fact that the seller varies the

quantity based on the bids. This efficient outcome is robust to the possibility of resale. So long as the

resale game satisfies a natural extension of individual rationality, truthful bidding followed by no resale is

an equilibrium in the auction-plus-resale game. Moreover, if resale is efficient, then the Vickrey auction

with appropriate reserve pricing is the optimal auction. No alternative auction can yield higher revenues.

A practical difficulty of using Vickrey pricing when auctioning multiple items is that identical items

sell for different prices. Worse, large winners tend to pay lower average prices than small winners. This

fact is an unavoidable implication of achieving efficiency. Large bidders have a greater incentive to

reduce demands than small bidders. Hence, efficient pricing must reward large bidders for bidding their

true demands by letting large bidders win the efficient quantity at lower average prices. In contrast,
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uniform pricing necessary leads to an inefficient assignment (Ausubel and Cramton 1998), and hence

suboptimal revenues when resale is efficient.

Participants in many actual markets voice a strong preference for uniform pricing (Wilson 1999).

Often the case for uniform pricing is made on efficiency grounds, and the case against Vickrey pricing is

based on examples of lost revenue. These arguments have little merit. On either efficiency or revenue

grounds, a Vickrey auction with reserve pricing should be preferred.
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