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The Ascending Auction Paradox

Lawrence M. Ausubel and Jesse A. Schwartz

1 Introduction

When a seller has many unitsto sell, she may decide to bundle them together and auction the lot.
But when the units for sale may be worth more than any one buyer can afford, or if the sellerisa
government who worries about creating monopoly power by putting al of aresourceinto onefirm's
control, the seller may wish to divide the entire quantity before selling it. Game theorists have recently
made strides in understanding multi-unit auctions, but most of this work has assumed sealed bids. Open
auctions, at least for the single-unit auctions that were traditionally studied, have severa advantages over
closed (sealed-bid) auctions. Auction houses, like Christie’' s and Sotheby’s, typically use the open or
English auction, where the auctioneer raises the price until only one bidder—the winner—iswilling to
purchase the item. When the value of the item for sale is uncertain to the bidders who may only have
noisy estimates, open auctions can stimulate bidding if bidders can infer information about the other
bidders estimates for the item. When multiple units are for sale, the advantages of using an open auction
may be even more important. Bidders may be able to process the information revealed in the auction, and
then update their value estimates and bidding strategies for all of the units. Additionally, as in the case of
the FCC' s spectrum auctions where the units for sale are heterogeneous, open multi-unit auctions provide

bidders the flexibility to pursue contingent strategies.

However, we will show that in uniform-price ascending auctions for multiple units, bidders have
strong incentives to reduce the quantities they demand to prevent the price from rising. We will show
how strong these incentives can be in a ssimple model with complete and perfect information, where
bidders have constant valuations over the quantity for sale. In our model, a seller with some perfectly
divisible quantity auctionsit to two bidders using an ascending auction. The auctioneer raises prices, and
alternates asking first one bidder how much quantity she demands at the current price, then asking the
other bidder how much quantity she demands at the next price. The auctioneer continuesto raise price
until thereis no excess demand. Asin asingle-unit English auction, when the auction ends, bidders pay

their bids for the unitsthey win. In this setting, we show that there is a unigue subgame equilibrium



outcome, and in this outcome bidders reduce to market clearing quantities at the start of the auction. The

paradox is that in the ascending auction prices never ascend—settlement isimmediate.

The game analyzed in this paper isthe format that a seller might initially envision usingin an online
auction of multiple identical objects, such asU. S. Treasury bills, shares of stock in IPO’s, emissions
permits, and industrial parts. Indeed, in the aftermath of the Salomon Brothers' scandal, it was proposed
in the Joint Report on the Government Securities Market (1992) that U. S. Treasury securities be sold

with exactly this auction:

[R]egistered dealers and other major market participants would have terminals that are
connected by telephone line (with appropriate security) to a central computer. The auction would
begin with the Treasury announcing an opening yield somewhat above the yield at which the security
is quoted in when-issued trading. All interested parties would then immediately submit tenders
electronically for the quantity of securities they would be willing to purchase at that yield

Once all bids were submitted, the resulting total volume of bids at this yield would be
announced. [If the bids exceeded the quantity issued] the yield would then be reduced, perhaps by
one basis point, and the bidding process repeated. Bidding would proceed in successive rounds...
with decreasing yields until the volume demanded was smaller than the size of theissue. All
participants who bid at the closing yield would receive awards, but at the next higher yield (U.S.
Department of the Treasury, Securities and Exchange Commission, and Board of Governors of the
Federal Reserve System, 1992, page 15).

We show in this paper that the auction format has potentially disastrous consequences. Bidders have the

incentive to divvy the quantity at the opening price, to end the auction before profit margins are eroded.

The“paradox” in our titleisintended to evoke Selten’s (1978) chain store paradox. Selten’ s paradox
isthat the unique backward induction solution to the chain store gameis so at odds with intuition.
Backward induction requires that in every period a different potential entrant opens a store, and then the
chain store monopolist accommodates, rather than deters, this entrance. Intuition predicts that the
monopolist should forcefully deter entrance in the early rounds to discourage future entrants, thereby

increasing the monopolist’s payoff. Selten candidly words the paradox:

If | had to play the game in the role of [the monopolist], | would follow the deterrence theory. |
would be very surprised if it failed to work... My experience suggests that mathematically trained
persons recognize the logical validity of the induction argument, but they refuse to accept it asa
guide to practical behavior (pages 132-133).

Selten’ s paradox, then, is a critique of backward induction. In our paper, we aso derive our result with a
heavy dose of backward induction. Unlike the chain store contest, however, the unique subgame perfect
equilibrium outcome in the auction game is quite generous to dl of the players. In the case of ascending
auctions, it is the backward induction that we believe makes our prediction reasonable. Bidders have time

to contemplate the detrimental effects of aggressive bidding. A bidder’ s aggressiveness will not only raise



the price for other bidders, but will also raise the price for units she expectsto win. It seems likely that
conducting the auction dynamically helps the bidder see that splitting the market at alower price can be
more profitable than bidding sincerely. It is well-documented that bidders conform to predicted behavior
in open settings where they have time to learn what are the best strategies but that bidders deviate from
predicted behavior in static, sealed-bid settings. Kagel, Harstad, and Levin (1987) and Kagel and Levin
(1993) show that bidders are more likely to play the dominated strategy of bidding above their valuesin a
single-unit second price auction than they arein an English auction. Further, Kagel and Levin (1997)
show that bidders are more likely to adhere to the demand reduction equilibrium in the ascending auction
than they are in the sealed-bid auction in a multi-unit auction. Alsemgeest, Noussair, and Olson (1998)
provide evidence that bidders with independent private values who each demand two units often demand
reduce in ascending auctions, dropping to one unit at prices lower than their valuations. The authors offer
the possible explanation that the demand reduction “may have been an effort to cooperate to lower price”
(page 95). Because the benefits of this type of cooperation can be predicted with backward induction, a

concept relevant to open auctions, it is our hypothesis that open auctions can perform very poorly.

An apt title for aliterature review is. Uniform-Price Auctions and What Can Go Wrong. What goes
wrong stems from the uniform pricing. Once abidder realizesthat by bidding aggressively sherisks
raising the price on al the units she will win, she may prefer to bid less aggressively to keep the price
low. That is, in uniform-price auctions a bidder often trades quantity for price: less quantity but at a
higher profit margin. The literature describes how this incentive can lead to low revenues or inefficiency.
An early example is Wilson (1979). Wilson assumes thereis a perfectly divisible good for sale that has a
common value to the bidders. He showsin examples with complete and incomplete information that in a
sealed-bid, uniform-price auction, bidders can achieve low price equilibria, even when the number of
biddersislarge. Back and Zender (1993) consider amodel similar to Wilson's, where aseller usesa
uniform-price auction to sell acommon-value good. They show that there exist equilibria that achieve
whatever constant reserve price the seller announces. Pavan, Licazi, and Gilli (1998) extend this model
by showing how the seller can set an upward-sloping reserve price schedule to partially protect herself
from the self-enforcing strategies described by Back and Zender. With two discrete goods, Noussair
(1995), Engel brecht-Wiggans and Kahn (1998), and Katzman (1997b) show that with independent private
values, each bidder shades her bid on the second unit she demands in sealed-bid, uniform-price auctions.
In particular, Engel brecht-Wiggans and Kahn emphasi ze the conditions under which two-object, sealed-
bid auctions yield “zero-price” equilibria, the sealed-bid analogue of the subgame perfect equilibriain our

paper. Ausubel and Cramton (1996) show that because of the incentive to demand reduce, or to submit



bid functions that lie below demand functions, it holds quite generally that there do not exist efficient

equilibriain uniform-price auctions where bidders have either independent or affiliated values.

There has been much less work describing the incentives bidders have in open uniform-price
auctions. Cramton (1998) discusses some of the virtues and pitfalls of using an ascending uniform-price
auction over a sealed-bid uniform price auction. Engelbrecht-Wiggans and Kahn (1999) show that in an
independent private values model with heterogeneous units, there exist low price equilibriain a
simultaneous-move ascending auction where bidders split the available units for sale in the first round,
and then enforce this split by threatening to punish bidders who interlope on another’ s units. Thiskind of
punishment strategy is common in the FCC’ s spectrum auctions (see Cramton and Schwartz, 19984, b).
Menezes (1996) shows that with complete information and private values, there exist low price equilibria
in a s multaneous-move, ascending auction. However, Menezesis only able to prove that low prices are
mandatory under the assumption that equilibria are “ Pareto perfect.” In using a Pareto refinement, he
assumesthat, if abidder iswilling to accept some payoff in some round, then the bidder must be willing
to accept any quantity that yields her at least as much payoff in earlier rounds. By contrast, we prove that
it is unnecessary to impose the Pareto refinement; low prices are a necessary consequence of subgame

perfection alone.

In our paper, we need only appeal to the subgame perfection refinement to derive the uniqueness of
the equilibrium path, a path that calls for the players to split the available quantity at the start of the
auction before pricesrise. We describe our model in Section 2. The model implies afew results about
behavior in the auction; we show these resultsin Section 3. In Section 4, we study the auction game
where bidders are permitted to bid for any share of the quantity in any round that they bid, regardless of
past bidding. In this game, there is a unique subgame perfect equilibrium path, where the first bidder
proposes some division of quantity, and the second player accepts. In Section 5, we show that asimilar
result holds even if we restrict the bidding so that once a bidder places some quantity bid, she can never
place a higher bid later in the auction. We view this model as a closer approximation to observed auction
mechanisms. This model also isa closer analog to the sealed-bid auction where bidders are required to
submit downward sloping demand curves. For this auction, we explicitly solve for the bid the first bidder
offers (which the second player accepts). We derive alimit result that says as the bid increment between
rounds goes to zero, the first bidder’ s offer is her value divided by the sum of the two bidders' values.

For very small bid increments and values not too dissimilar, this means that the bidders split the available
quantity approximately in half. In Section 6, we provide some evidence that our result is not limited to

auctions with complete information or with a perfectly divisible good. Our conclusionsare in Section 7.



2 Model

A seller has some continuously divisible quantity of assetsfor sale. We normalize this quantity to Q
= 1. Intheliterature thisis called a share auction, the interpretation being that bidders compete over what
percentage they want. There are two bidders, A and B, who have constant valuations for the entire unit.
Denote the bidders' marginal valuesby V. and Vs. The bidders payoff functions are linear: Ui(q, X) =
gV; —x if bidder i wins q units and paysx. We assume complete information, meaning that both A and B

know these payoff functions.

The extensive form of the game is loosaly inspired by the FCC spectrum auctions, and is common
knowledge to the players.' Before the auction begins, the seller announces areserve price Py, afirst
bidder 1 (1 = A or B), asecond bidder 2 (the other bidder), and quantity restrictions q; -, 0 (0,1] and g0 [
(0,1]. A bidder can neither bid for nor win more than her quantity restriction. So that our auction is not
trivial we assumethat g, + 0, o > 1. Bidding occursinroundst=1, 2, ... until the auction ends.’ The
price rises by the constant increment A in each round; in round t, the asking priceis P, = Py + tA. We
assume that the auctioneer takes bidsfirst from bidder 1, then from bidder 2, dternating between the

bidders until the auction ends.

Alternating Bids: Inround 1 and al odd rounds such that the auction has not ended, bidder 1 bids. In
round 2 and al even rounds such that the auction has not ended, bidder 2 bids.

We consider two games. In the Unconstrained Eligibility Game, a bidder may bid for any quantity
less than her quantity restriction, regardless of her past bidding. In the Monotonic Eligibility Game, a
bidder may only place bids that do not exceed her prior bid. Definitions are given below.

Unconstrained Eligibility Game: Bidsq;; (i =1, 2 and t = 1) must satisfy the quantity restriction rule:
Ou1 20uefort=1,3, ...
Qoo 2 Cpifort=2,4, ...

Monotonic Eligibility Game: Bidsq; (i =1, 2 and t = 1) must satisfy the monotonic eligibility rule:

Or-1 20112 Chsz= ...

! For adescription of the rules and performance of the FCC' s spectrum auction, see Ausubel et. al. (1997), Cramton
(1995, 1997), McAfee and McMillan (1996), and McMillan (1994).

2|t will not matter if the auctioneer announces some finite “last round” so long as this last round is sufficiently
large—see Assumption 1 in Section 3.



02,0 > 02,2 > 02,4 2 ...

Definition 1: An offer isfeasibleif it satisfies the rules of the game being considered.

The auction continues so long as thereis excess demand. If i placesabid g rinround T = 2, such
that gt + g1 < 1, then the auction ends. The auctioneer awards the entire unit giving preference to bids
placed at the highest price. Asin the English auction or the FCC spectrum auctions, bidders must pay the
price at which they win quantity. If the auction endsinround T > 2, theni winsq; r at price Pr, j wins
Q;, -1 @ price Pr.1, and i wins the remaining quantity 1 —q;r — g 1.1 a price Pr. If theauction endsin
round 2, then the auctioneer awards g, ; to bidder 2 at price P, and awards g 1 to bidder 1 at price P,
returning any remaining quantity to the seller. Observe that the auction cannot end in round 1 before
bidder 2 has achanceto bid. We emphasize that bids are real financial commitments—if a bidder places

aquantity bid at agiven price, it is possible that she may win this quantity at this price.

Next we specify histories, strategies, and the equilibrium concept we will use to analyze this game.
Define the history for round 1 as Hy = { (1.1, 02,0)} , Where the quantity restrictions g, -; and g0 can be
thought of as bids that occurred in rounds—1 and 0. For t > 1, let h; be any feasible sequence of bidsin
rounds —1 through t — 1 (where bidsin —1 and O are the quantity restrictions g, ; and ¢0). Let H; bethe
set of al such sequences h. For odd roundst, around-t behavioral strategy s for bidder 1, the bidder
who movesin round 1, is afunction that assigns for each h; [J H;, a probability distribution (on those
guantities permitted by the rules of the game we consider). Note that thisis a considerable abuse of
notation, since we also use g to dencte the realization of bidder 1'sround-t bid. The vector of each gy (t
=1,3,...)isbidder 1'sstrategy ;. Bidder 2'sstrategy 0. is defined likewise. A pair (s, gz) induces a
probability distribution over outcomes after any history h.. A subgame perfect equilibriumisapair (g.*,
02*) such that neither player can profitably deviate after any history h; given that the players adhere to the
specified strategies after the deviation.® In this paper, we will focus on subgame perfect equilibrium
(SPE).

Aside: To approximate the auction where bidders name their bids, we have chosen this alternating
bid model. The common alternative that many modelers have fruitfully used is the so-called button
model, where each bidder depresses buttons to indicate the quantity she bids for as the auctioneer raises

prices. Of course, physical buttons need not exist— they are just aliterary tool to help explain the

3 Where by “profitably” we mean that which increases the expected value of utility.



extensive form of the auction. In the irrevocable-exit button models, used to analyze unit auctions by
Milgrom and Weber (1982) and multi-unit auctions by Menezes (1996) among others, bidders must bid in
every round or be disqualified from the auction.” In English auctions like those used by Sotheby’s, a
bidder can name a bid, and then not bid again until another bidder names a higher price. Often when the
bidding is down to two bidders, they will alternate naming bids until only one bidder remains. In English
auctions a bidder can jump bid or raise her own bid, but thisis usually to send asignal (see Avery, 1998).
In the FCC spectrum auctions, it is our experience that bidders usually alternate bidding, one bidder
placing a bid on some license in one round, and arival topping this bid in the next round. When bidders
do raisetheir own bids, it is usually to signal strong interest in the license. We view our aternating bid
model as a useful approximation to this type of auction, an approximation that abstracts away from such
signaling. Our model iscloser in spirit to Milgrom’s (2000) model of a multi-unit auction, where there
are two relevant prices in the auction, one price if sheisthe high bidder (her bid) and another price if she
is not the high bidder (the high bid plus a bid increment).

3 Preliminaries

Before moving to our main results in the next sections, there are afew preliminaries that result
amost immediately from the specification of our model. These preliminaries will enhance the

interpretation of later results.

Lemma 1: For either the Unconstrained or Monotonic Eligibility Rule Game, any offer g+ > O that ends

theauctioninround T > 2 is strictly dominated by an offer of O.

Proof: If the auction closes fter i placesabid g+ > 0, then it must bethat ¢+ + g; 1 < 1. Theni wins ¢+
at pricePrand 1—qir—Qjr1 a price Pro. Intotal, i wins1 — gjr.1 units, paying Pr for g+ > O units.
Alternatively, by bidding O inround T, i still wins 1 - ¢} 1.1 units, but pays the lower per unit price Pr_, for
al of this quantity. O

By Lemma 1, we will be ableto say that a bidder “accepts’ if she ends the auction after round 2, knowing
that any optimal strategy insiststhat she bids 0. Also, by Lemma 1, this auction is uniform-price in nature,

* For a description of many types of button auctions, see Bikhchandani and Riley (1991).



meaning that each bidder chooses to win all of her quantity at the same price. We give some definitions
below.

Definition 2: If abidder bids0inroundt > 2, we say that she accepts the offer made by her rival in the
previous round. If V, > Py, we say that bidder 2 accepts an offer in round 2 if she ends the auction by
bidding the lesser of her eligibility (g.,0) and the residual of bidder 1'sround 1 bid (1 —q,3). Inroundt,
bidder i rejects an offer g, if she counteroffers g;; > 1 — g; .1, SO that the auction proceeds to round t+1.

Throughout the paper, we will maintain the following assumption requiring that bid increments are

sufficiently small and that values are generic relative to each other and the bid grid.

Assumption 1: Vo > Vg andVa z P fort=1, 2, ... The bidincrement A is small enough so that for
some round Swhen it is B’s move, the following holds: Ps < Vg < Ps,; < Va. (If rather than alowing an
infinite number of rounds, the auctioneer commitsto a“last round” L, then L islarge enough so that P_ >
Va).

Remark: By Assumption 1, A isthe high valued bidder. Also by Assumption 1, Sisthelast round B
moves such that the price is below her value. We will use Assumption 1 to construct alast interesting

round (S + 2) such that even if the horizon isinfinite, play will not continue past this round.

Lemma 2: For any subgame which beginsin round S+2, in any SPE bidder B accepts with probability
oneany ga s+ < 1 made by A inround S+1.

Proof: By accepting ga s« < 1inround S+2, B abtains the payoff [1 — ga s«][Ve — Ps], which is positive
by Assumption 1. Alternatively, by rejecting, B can no longer obtain any quantity at a price less than her

value, eliminating the possibility of earning a positive payoff. [J

Definition 3: For round S+1, any feasible offer ga s+ < 1 made by A is acceptable, and the supremum of

acceptable offersis A’s best acceptable offer g, s,,. For roundt < S, afeasible offer g by bidder i in

round t is defined recursively as:



strictly acceptable
acceptable if [1—0qid[Vj— Pl
unacceptable <

\

Qje1(he, GOV —Pad],

where G +1(h;, g;) is the supremum of acceptable offers j can make in round t+1, given the history h; and
offer gt Let qi«(h) =sup{q g isacceptable}. Call Gj.(h;) the best acceptable offer bidder i can make

inround t.

Remark: While strictly acceptable, acceptable, and unacceptable are recursively defined, their meanings
coincide with conventional meaningsif G;w1(h;, gi)[V;— Pw4] isbidder j’ s continuation payoff if g, is
rejected. Our work will show thisis the relevant continuation payoff, since a bidder will not find it
profitable to make unacceptable offers. We will prove that in all SPE, bidders will accept with

probability one strictly acceptable offers and will reject with probability one unacceptable offers.

We next introduce some additional notation, notation that will draw the reader’ s attention to
similarities between our model and Rubinstein (1982) bargaining between two traders who discount
payoffs. Supposeinroundt = 2, bidder i is deciding between ending the auction in round t and
prolonging the auction by making some offer greater than the residual supply. By ending the auction she
can obtain the profit margin V; — P, (by Lemma 1). However, by prolonging the auction to the next
round, i’s profit margin isat most V; — P.. We define a*“discount factor” &, astherate at which a

bidder’ s profit margin declines by prolonging the auction’ s settlement to the next available price.

v -R

Definition 4: Let o=
Vi - R—z

Remark: It followsthat the discount factor &;; < 1 for t satisfying V; — P, > 0.

Lemma 3: (decreasing discount factors): If t=2andif V;— P, >0, then &; > & t+2.

Proof: It sufficesto show that [V; — P] > [V; — Pu2] [Vi — Pi2] or equivalently, [V, —P] ? > [Vi—P —
2A] [Vi— P+ 2A]. Thisfollowssince—4A%<0. O



Lemma 3 says that aplayer’s discount rate decreases over time; that is, a player becomes increasingly

impatient as the auction progresses towards the price at which she no longer wantsto win any quantity.

With these preliminary results in hand, we are now ready to analyze the Unconstrained Eligibility

Game.

4 Unconstrained Eligibility Game

The first game we study is the Unconstrained Eligibility Game, where a bidder may place any
quantity bid when it is her turn. A backward induction argument will establish that the unique outcomeis
that bidder 1 makes some offer that bidder 2 accepts.

Theorem 1: Suppose V and Vg satisfy Assumption 1. Then the Unconstrained Eligibility Game has a
unique SPE path. On this path, bidder 1 makes her best acceptable offer in round 1, and bidder 2 accepts

inround 2.

Thistheorem is simple to derive using backward induction. In fact, the proof is much like one would
prove the uniqueness of afinite-horizon Rubinstein bargaining game with discounted payoffs. The finite
horizon in our proof comes from the last interesting period — Lemma 2 above establishes that play will not
proceed past round S+2 in any SPE. Then assuming that there is a unique SPE outcome in rounds t+1,

..., S+2, each bidder would prefer to keep for herself any surplus the next player would forfeit by not
accepting and making her equilibrium offer. Details of the proof arein Appendix 1.

But this game may not be a good approximation to real-world auctions. In some sense, with no
eigibility constraints, the first bidder may decide to place alow bid to seeif the other bidders will
cooperate to achieve alow price. The cost of doing thisis negligible sinceif the other bidders do not
cooperate, the first bidder can always bid aggressively later. In the FCC spectrum auctions, which did
constrain biddersto use or lose eligibility, serious bidderstypically did not reduce their éigibility much at
the beginning of the auction. Was this due to the digibility constraint? In the next section, we analyze the
more complicated game where once a bidder reduces her quantity, she forfeits the ability to bid for higher

guantities later in the auction.
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5 Monotonic Eligibility Game

In this section, we analyze the Monotonic Eligibility Game, which requires a bidder to forfeit
eigibility if she reduces her quantity bid. Thisisanalogous to irrevocable-exit button auctions, or the use
it or loseit rulesin the FCC spectrum auctions. With the monotonic eligibility rule imposed, a bidder
may be reluctant to reduce immediately to the market clearing level since she has no guarantee that the
next bidder will cooperate, and any reduction in eligibility may mean losing bargaining strength.

Intuition might suggest that bidders alternate reducing their eligibilities by small amounts until the
auction ends. This outcome would resemble the equilibrium in Admati and Perry’s (1991) contribution
game, where the players aternate making small contributions towards ajoint project until the sum of the

contributions exceeds the project’s cost.

However, just asin the Unconstrained Eligibility Game, the bidder who moves first immediately
reduces her quantity to the market clearing quantity, and the next player ends the auction. We state this

result precisely in Theorem 2.

Theorem 2: Suppose V4 and Vg satisfy Assumption 1. Then the Monotonic Eligibility Game has a
unique SPE path. On this path, bidder 1 makes her best acceptable offer in round 1 and in round 2, bidder

1 1-9 1-0
2 accepts. If gy 12 ——22— and gy, 0= ———=—, then bidder 1'sround 1 offer is ——22—.
1- 51,352,2 1- 51,352,2 1- 51,352,2

Proof: The proof isin Appendix 2.

The proof takes advantage of two things: backward induction and the perfect divisibility of the unit.
Lemma 2 above shows that play will not proceed past round S+2. From this point, we work backward.
In every round, we prove that a bidder prefersto either accept or make some acceptable counteroffer
rather than make some unacceptable offer. Thereason isthat when it isabidder’ sturnto bid, she hasa
first mover advantage. This advantage arises because if the next bidder refuses an offer, she will raise the
price on the quantity that she will win. Since quantity is perfectly divisible, a bidder can offer her rival
just enough quantity to induce the rival to settle immediately at alower price rather than later at a higher
price. Thefirst mover advantage is akin to that in Rubinstein bargaining. In Rubinstein bargaining the

11



cost of delaying is one period’ s discounting (or one period' s cost of bargaining). In our model and in
Rubinstein’s model, each player takes advantage of the other’ simpatience when determining her best

acceptable counteroffer.

Though the logic of the proof is straightforward, the proof isfar from trivia. The eligibility rule
means that there are subgames when abidder is not alowed to make the highest offer the next bidder will
accept. In Appendix 2 (Claim 3), we show that by making an acceptable offer in round t, a bidder will not
have the igibility to make the highest acceptable offer inround t + 2. It isthisresult, that makes the
round 1 offer we state in Theorem 2 resemble theinitial offer in the Rubinstein (1982) bargaining game
where the players have constant discount rates. For in the Rubinstein game with an infinite horizon and

stationary payoffs, a player’'s optimal offer in one period isidentical to her optimal offer two periods later.

To diminish the first mover advantage, we next take the limit as the price between rounds goes to

Z€ero.

Corallary: Forn=1, 2, ..., define Gy(A,) asthe Monotonic Eligibility Game with bid increment A, =

1n. Thenasn - o, theinitia offer in G, goesto ﬁ

The corollary implies, the bidder who moves first wins more quantity the higher her value, and wins
less the higher her opponent’ s value. For values not too dissimilar and for P, = 0, the bidders each win

approximately half the quantity.

6 Discrete Units and Incomplete Information

The uniqueness that we derived in Theorems 1 and 2 may result from our assumptions of complete
and perfect information, the ripe setting for a backward induction solution. But the ideathat bidders
accommodate their rivalsin the ascending auction applies more generally. With incomplete information,
abidder must ask herself: Should I make gestures to end the auction now with the price very low, or
should | bid aggressively in hope that my opponent’ s values are low or that my opponent will
accommodate my demand? In this section, we will suggest with an example that the answer to this
guestion isin favor of keeping the price low. We will show that the result that bidders are able to

coordinate adivision of the available quantity at low pricesis not merely an artifact of our assumptions of
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complete information and perfect divisibility (though these assumptions permitted arigorous proof in a
generic setting). We will give an example where even though a seller uses an ascending auction to sell
two discrete units to incompletely informed buyers, the buyers still forgo bidding competitively in favor
of each winning one unit at the lowest allowable prices. More importantly, we show that this demand
reduction occurs for the same reason: bidders predict the (expected) consequences of forcing the price up,

and prefer to settle at low prices.

Assume the seller has two discrete unitsto sell to our bidders A and B, who each have constant
marginal values and a capacity for both units. Let these valuationsbe V » and V. We will make different
assumptions about the distributions these values are drawn from. In this section, we require bids to be
discrete, g; 0 {0, 1, 2}, and we require that bids satisfy the monotonic eligibility rule described in
Section 2.

The first example shows that bidders coordinating a division of the available quantity early in the

auction does not depend on our perfect divisibility assumption maintained in Sections 3 through 5.° Our

second example shows that this coordination does not require complete i nformation.

Example 1 (Degenerate Distribution): Suppose A’s valuation equals V 5 with probability oneand B's
valuation equals Vg with probability one. Supposethat (i) Va—Vg>A and (ii) Va—P1>2[Va— (Ve —
A)].° Thenin any SPE where bidders use weakly undominated strategies, each bidder wins one unit, the

auction ends before reaching round 4, and revenues are at most P, + P».

Proof (Sketch): The following can be shown to be weakly dominated strategies:

» aplayer bidding for zero units a a price below her value
» aplayer bidding on more than zero units is more than her value.

Consider subgames beginning in round t whereit is A’s move, where A’s éigibility istwo units
(meaning that A has not yet made a bid for less than two units) and B’ s eligibility is one unit, and wheret
satisfies: [Va —P.o] > 2[Va— (Vs —A)]. Bidder A’sbest response isto accept, winning one unit at price

P.o. Thisisthelowest pricethat A can win one unit. For A to win two units, B would have to bid zero

® Our first example corresponds to the equilibrium Katzman (1997a) derives for a sealed-bid, uniform-price auction
with complete information given the two bidders' values satisfy his condition (1a*), which states the high valued
bidder’s value for her second object is not large relative to the low-valued bidder’ s value for a second object.

® Assumption (ii) requiresthat A’s valuation is small enough that she prefers winning 1 unit at alow price over
winning two units at a price high enough to bump B out of the auction.
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units, but she will not do this until the round occurs where price exceeds her value. When B bids zero
units, A will win two units at the prior price, whichisat least Vg —A. Thus, A’s payoff from winning two
unitsisat most 2[Va — (Vs —A)], lessthan A would get by reducing to one unit in round t.

Consider subgamest whereit is B's move, where A and B are each dligible for two units, where the
priceisbelow B’svalue, and wheret satisfies: [Va — Pi1] > 2[Va — (Vs —A)]. By the argument above, if
B bids one unit at the current price, then A will accept in the following round. This gives B her highest
possible payoff given that A will not bid zero units at prices below V. Since B strictly prefersto win one
unit at the current price to winning one unit at any higher price, B will bid two unitsonly if A’sstrategy is

to bid one unit in the next round. Otherwise, B will bid one unit in the current round.

Consider roundst whereit is A’s move, where A and B are each eligible for two units, where P, <
Vg, and wheret satisfies: [Va —P] > 2[Va — (Vs —A)]. Bidder A can win one unit at the current price by
bidding one unit in round t, after which B will accept in round t+1. Because A strictly preferswinning
one unit at the current price to winning two unitsat price Vg — A, A will only bid two unitsif B’ s strategy
isbid one unit in round t+1 (so that A can accept in round t+2); otherwise, A will bid one unit in the

current round.

Finally, consider the first round. SupposeitisA’smove. SinceVa—P; > 2[Va — (Vs —A)], then by
the above argument A will bid one unit in round 1 and B will accept in round 2, or A will bid two unitsin
round 1, B will bid one unit in round 2, and A will accept in round 3. In either case, A will win one unit at
price P, and B will one unit at no more than P,. Alternatively, supposeitisB’smoveinround 1. Then
sinceVa—Po>2[Va— (Vs —A4)], B will either bid one unit in round 1 and A will accept in round 2, or B
will bid two unitsin round 1, A will bid one unit in round 2, and B will accept in round 3. In either case,

B will win one unit at price P, and A will one unit a no more than P,.[]

Though Example 1 issomewhat trivia given the degenerate distributions, it shows that if the values
are not too far apart, bidders coordinate a division of the units early in the auction. In the next example,

we allow for incomplete information.

Example 2 (Nondegenerate Distribution): Suppose V 4 is drawn from some distribution with support [La,
Ha] and Vg isdrawn from some distribution with support [Lg, Hg]. Further suppose that (L, Ha, Ls, Hg)
are such that for any Va4 O [La, Ha] and any Vg [ [Lg, Hg], conditions (i) and (ii) in Example 1 hold.

Then in any Perfect Bayesian Equilibrium where bidders use weakly undominated strategies, each bidder

wins one unit, the auction ends before reaching round 4, and revenues are at most P; + P».
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Proof: For any beliefs that bidders might form, they know that conditions (i) and (ii) hold. A subgame
perfection argument similar to that in the proof of Example 1 establishes that the auction ends as stated. [J

Though our examples were very specialized, they show that it is the players using backward
induction that leads to low revenue outcomes in the ascending auction. Though these examples require
special asymmetries on the bidders' distributions this may be an artifact of the discreteness of the units for
sale. If the quantity for saleis sufficiently finely divided then bidders may be able to “buy off” low
valued bidders, letting the low valued bidders win a small portion of the quantity in return for keeping the

priceslow.

7 Conclusion

Multi-unit ascending auctions may be viewed as a negotiation between bidders on how to divide the
available quantity. In an ascending auction with only two bidders who have complete and perfect
information, we have shown that in the unique equilibrium bidders negotiate very rapidly. Thefirst
bidder proposes a split in the first round, and the second bidder accepts in the second round. A pressing
issue for usis whether this result generalizes to more than two bidders. Also at issue is whether the
uniqueness result extends when there are more than two bidders. In the alternating-offer bargaining
game, there is uniqueness when just two bargainers are at the table, yet the uniqueness no longer holds
when there are three bargainers (see pages 63-65 of Osborne and Rubinstein, 1990). The bargaining
literature, however, typically does not assume that the termina priceisreached in bounded time. Nor
does the bargaining literature typically assume that once a player proposes an offer, her future offersare
constrained. Yet, such limitations are sensiblein auctions. We conjecture that, in our framework, the

uniqueness result does generalize to more than two bidders.

It follows from our paper that the sealed-bid uniform-price auction can do better than the ascending
uniform-price auction. Suppose that the auctioneer imposes no quantity restrictions on the bidders. In the
sealed-bid uniform-price auction, the auctioneer takes the bidders' downward-sloping bid functions that
map quantities into prices, aggregates these functions, finds the price that clears the market (the price of
the highest rejected bid), charges this price for all quantities awarded, and awards quantity corresponding

to the bids above this price.” To make this auction consistent with the ascending auction that we have

" For the precise rules of a sealed-bid uniform-price auction see Ausubel and Cramton (1996).
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presented, suppose that bid functions must be step-functions with steps at P, Py, ... Then there exists an
efficient Nash equilibrium where each bidder bids for the entire quantity at the highest allowable bid
below her value. In thisequilibrium, the high valued-bidder will win the entire quantity and pay the
highest bid increment below the low-valued bidder’ s value. This gives the efficient outcome, and raises
more revenue than the ascending auction if there are two or more bid increments below the low-valued
bidder’svalue. There may be other equilibriain the sealed-bid auction. One might be tempted to say that
the set of Nash equilibrium outcomes in the sealed-bid auction are contained in the set of subgame perfect
equilibrium outcomes since bidders might use complex punishment strategies to enforce different
outcomes. Our paper, however, shows that this in not the case, since there exists the efficient outcomein

the sedled-bid auction, but the efficient outcome does not obtain in the ascending auction.

Much research remains. First, given the severe prediction made by the ascending auction paradox, it
isimportant to know the class of dynamic auctions to which the paradox extends. Clearly it does not
extend to the alternative ascending auction proposed by Ausubel (1997), asthe priceis not uniform. It
may extend to the FCC auction format, as intertemporal arbitrage tends to give the outcomes a uniform-
price character. Though we modeled the auction format in our paper to resemble the FCC auctions, akey
distinction is that in the FCC auctions, the licenses for sale are discrete and labeled. This means that
prices can rise by different amounts on differently labeled licenses. This difference could make the
backward induction argument much more complicated, though we believe the reasoning still applies. A
second issue our research raises is how robust the ascending auction paradox is to incomplete
information. We have shown with a stylized example that with some incomplete information, bidders
still can use backward induction to justify settling the auction immediately at low prices. If in more
general settings of incomplete information, it happens that information on bidders signalsis thrown out
in attempt to settle the auction before the price rises, then some of the proposed benefits of an ascending

auction will not materialize.
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Appendix 1: Proof of Theorem 1

For this proof, define .0 = 11 as bidder 1's quantity restriction. By Definition 3, only offersgs s
by B inround Sthat satisfy: [1—0ss][Va —Ps1] = O 1[Va —Psal, or equivalently, g s < 1 —0a s+10a 511
are acceptable, where A’ s best acceptable offer in round S+1is T, s,y = gao, her largest feasible offer.
Thus, B’s best acceptable offer inround Sis g ¢ =min{dgo, 1 —Oasi1 Oasia}- ANY Oss< Tg s IS
strictly acceptable, and must be accepted by A in round S+1 with probability onein any SPE. Any ggs >
s, s Must be rejected by A in round S+1 with probability one, since A can increase her payoff by
counteroffering ga o (0or something very near ga o), which B will accept with probability one by Lemma 2.
Inround S, by rejecting an offer, B cannot obtain a higher payoff than g s[Vs — P, but B can get
arbitrarily close to this by counteroffering closeto g 5. Inround S, B will not make an unacceptable
offersince Gz s >1— Qas =1 —0ao Bidder B will accept al strictly acceptable offersin round S, and
will reject all unacceptable offersin round S, in favor of counteroffering G 5. This counteroffer must be
accepted with probability one in any SPE, since otherwise B would want to offer “just below” g g SO
that no best response would exist for B in round S.

Assume that for rounds s [ {t+1,..., S} that: (*) For any subgame which beginsin round s, in any

SPE bidder i who movesin round s;

» does not make an unacceptable offer
» accepts with probability one any strictly acceptable offer

» regjectswith probability one any unacceptable offer, and makes her best acceptable counteroffer,
whichis g ¢ =min{gyo, 1- 6S+1qj,s+l} .

We complete the proof by showing (*) extends back to round t. It issimple to show @ ¢ = min {qo, 1 -
05410 o1} - Bidder i does not make an unacceptable offer since G > 1 — G ., - That bidder i accepts with
probability one strictly acceptable offers and rejects with probability one unacceptable offers follows
from a parallel argument to that for round s = S above. This establishesthat (*) extends back to round t.
The theorem then follows noting that bidder 1’ s best acceptable offer must be accepted with probability
one, otherwise bidder 1 wishesto offer “just below” her best acceptable offer so that no best response

would exist.(]
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Appendix 2: Proof of Theorem 2

The proof relies on a series of claims, each one proven inturn. Theideaisto show that a bidder

never wants to make an unacceptable offer. To do this, we need to characterize best acceptable offers.

Claim 1: For any subgame which beginsin round S+1, in any SPE bidder A:

e accepts with probability one any strictly acceptable offer
» regjectswith probability one any unacceptable offer, and makes her best acceptable counteroffer,

Oasa = Oasi
Proof: By Definition 3, offers gs s by B in round S are strictly acceptable only if: [1 — s ][VA — Ps4] >
Oas1[Va —Psa], noting that G, s,; = das1, the supremum of feasible offers. Such offers must be
accepted with probability one by A since rejecting gives alower payoff. Offersgss by B inround Sare
unacceptable only if: [1 — Qs s][Va — Ps1] < gasi[Va —Ps«]. Such offers must be rejected with
probability one since A can win ga s1 (or just below ga s1) at price Ps.; sSince by Lemma 2, B accepts al
Oas+1 < 1 with probability one. Further in any SPE, if an unacceptable gs s was offered in round S, thenin
round S+2 B must accept with probability one even if ga s; = 1. Otherwise A would want to offer “just

below” 1inround S+1 so that no best response would exist for A.[J

Claim 2: For any subgame which beginsin round S, in any SPE bidder B:

» does not make an unacceptable offer
» accepts with probability one any strictly acceptable offer

» regjectswith probability one any unacceptable offer, and makes her best acceptable counteroffer,
Oss = Min{0ss2, 1 —0as+10as1}-

Proof: The acceptability condition for afeasible offer ggsis[1—0ss][Va —Ps1] 2 gasi[Va —Ps.], OF
equivalently, gs s < 1 —0a s+10a s1. Therefore B's best acceptable offer is gy s = min{ s s2, 1 —
Oasr1asi}t. Any offersgss < Gy g are strictly acceptable, so that by Claim 1, A will accept gg s inround
S+1. Bidder B does not make unacceptable counteroffers since gz s > 1 —Qa s1. The remainder of the

proof isparald to the proof of Claim 1.0]

Claim 3 (Stand-Pat Claim): If bidder i makes an acceptable offer g;;inroundt < S—1, and if bidder |
makes an acceptable offer g1 in round t+1, then g;; is bidder i’ s best acceptable offer in round t+2.
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Proof: For g to be acceptable in round t, it must satisfy: [1 —q[V; — P1] =2 G ,4[V; —Pud] or,
rewritten, Git < 1 — & t17j 1., Where @ ., isthe best acceptable offer j can makeint+1. Let] offer g <
g;.inround t+1. Then any g, madein t+2 is strictly acceptableiif it satisfies: [1 — o] [V) — Prua] >

0.+1[Vj — Pug] or, rewritten, gi; < 1 — §;3q;+1. But because discount factors are strictly decreasing, ¢ <

1- 6,-,t+1qj w1 <1- 6,-,t+3qj 1 S 1= Qali+1 and SO g is strictly acceptable in round t+2. Thus, ¢ is

bidder i’ s best acceptable offer in round t+2. [

Claim 4: If gt isacceptablein round t < S—1, then bidder ' s best acceptable offer inroundt + 1is
Qi = min{ g1, 1 — Oi 120} -

Proof: Using the Stand-Pat Claim, the acceptability condition for ¢ 1 becomes: [1 —qj1][Vi—P] =
Gi[Vi—Puo], or equivalently, g1 < 1 —0i20i;. Imposing the eligibility constraint then givesq ;. U

Claim 5: Inroundt< S—1, afeasible offer q;; is acceptable if and only if it satisfies

gr<maxil-9: .0 170 (**)
e bt JVt_l’:l-_csj,t+15i,t+2 '

Proof: (Necessity) If g; is acceptable, then by Claim 4, [1 —qi 2 & 1% Min{ ¢ 1, 1 — & w20t} ; thisis

1- 5i 142

equivalent to (**). (Sufficiency) Likewise, T ;,y< Max{1=0; .00\ —
1_5i,t+25j,t+3

}fort<8—1(anda|so

fort=S—1by Claim 2). Therefore, afeasible q;; is acceptable if it satisfies: g < 1—

1-9,,. _ _ 1-9,,. 1-9 .,
& 1MaXI L= G o0 ————o— +, OF rewritten, Gy < Mind1-9; e =
1_5i,t+25j,t+3 1_5i,t+25j,t+3 1_5j,t+15i,t+2
1—5j t+1 . . . . . .
15—', noting &3 < §,1+1 (Lemma3). The claim follows noting that any feasible offer satisfying
T Oj Y2

it < 1— Qw01 Must be acceptable since @ 4, < Gjra. U

Claim 6: Inroundt< S—1, bidder i’ s best acceptable offer is

. 1-5 l_dj,t+l
(= MIN< G ;—p, Max j,t+1qj,t—1'm
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and all lower offers are strictly acceptable.
Proof: The expression for G, followsimmediately from Claim 5. Smaller offers are strictly acceptable

follows from substituting “<” for “<” in the acceptability condition in Claim 5's sufficiency proof. O

Remark: By Claim 6, abidder’ s best acceptable offer depends only on the current eligibilities (each
bidder’s most recent offer), and no prior part of the history. Thus, werefer to g, (hy) as G (G2, Gj-1)-

Claim 7: For any subgame which beginsin round S—1, in any SPE bidder A:

e does not make an unacceptable offer

» accepts with probability one any strictly acceptable offer

* regjectswith probability one any unacceptable offer, and makes her best acceptabl e counteroffer.
Proof: By Claim 2, after A makes an unacceptable offer g in round S— 1, B will counteroffer Ogs =

min{gesz 1 —Sasuq }. If Oss = Os.s2 then A could do better by accepting gg s> inround S— 1.
Therefore, we need only consider unacceptable offers g” such that Ogs = 1- dasuq”. It followsthat by

accepting in round S+1, A obtains the quantity Sa s.1q° at price Ps..

1-90
Any feasible offer less than ————=°— s gtrictly acceptable by Claim 6 and will be accepted by B

~UgslasH
in round S with probability one by Claim 2. To show that A does hot make an unacceptable offer in

1-0g¢

round S—1, it suffices to show > 8p si1, OF rearranging, 1 —Sasi1 — ds 1 — (Basi1)] > 0.

- B,SdA,S+l

Thisholdsif and only if dg s < ;, which holdsfor all s+ < 1if and only if dg s < Y. With
AS+L

Ve — Ry < Psro = Fs _%

B Ps—z Ps+2 - Ps—z

constant bid increments, dg s = =14 Thus, A will not make an

unacceptable offer in round S— 1. The remainder of the proof is parallel to the proof of Claim 1.[]

Claim 8: Assumethat for roundss O {t+1,..., S—1} that: (#) For any subgame which beginsinround s,
in any SPE bidder i who movesin round s

» does not make an unacceptable offer

» accepts with probability one any strictly acceptable offer

* regectswith probability one any unacceptable offer, and makes her best acceptable counteroffer.
Then inround s =t the induction hypothesis (#) holds.
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Proof: First, notice that rather than make any unacceptable offer in round t such that j’ s best acceptable
offer inround t+1is ¢4, i can do strictly better by accepting g; ., in round t at alower price. Therefore

we need only consider unacceptable offers q” by i such that j’s best acceptable counteroffer is strictly less

1-¢,
than ;1% Given that bidder j will respond to g” with  ,, = max{l—dmzqu ﬁ} by
T Oit+29j 143

1-9,
accepting in round t+2 the quantity i will obtain at price P is[1 -] < |1~ S e
l_di,t+25j 143

j i+l

—— de
1_5j,t+15i,t+2

5i,t+2(1_ 6j,t+3)
1- 5i,t+2 5j 143

]. Alternatively, any of i’sfeasible round t offersthat are less than

strictly acceptable. By the induction hypothesis (#) of this claim, bidder j will accept such offers with
probability oneinroundt + 1.

1-9.
To show that bidder i will not make an unacceptable offer, it sufficesto show that ﬁ
T Oj Y2
5i,t+2 1- 5j,t+3) . .
1-5 3 " or rearranging, [1 — &2 [1 — & t+1 — Ois2(Qj 141 — O 1+10j,+3)] > 0. Noting that 1 — ;2> 0
T Oit+20) t+3

[Pt+1 - R—l] _6i,t+2[R+3 _Pt+1] >

and substituting in the formulae for & +1 and & +3, it suffices to show that v _p
!

0, which holds for constant bid increments. This establishesthat in round t, i will not make unacceptable

offers.

The remainder of the proof is parallel to the proof of Claim 1.0

Proof of Theorem 2: By Claim 8, bidder 1 will not make an unacceptable offer in round 1. The unique
SPE outcomeisfor bidder 1 to make her best acceptable offer, which in round 2, bidder 2 must accept
with probability one, since otherwise bidder 1 would wish to offer “just below” her best acceptable offer
so that no best response would exist. If the quantity restrictions are sufficiently large (as stated in the

52,2

1_
Theorem), then by Claim 6, bidder 1'sround 1 offer is ——==—.[1

013022

8 But of coursein round 1, we need also consider unacceptable offers by 1 such that bidder 2's best acceptable offer
inround 2 is g, Since by the rules of the game, bidder 1 cannot accept in round 1. However, any unacceptable offer
1 makesin round 1 such that 2 responds with g, o is strictly dominated by the offer 1 — &, ,0;.
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