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Abstract

In multiple-object environments where individual bidders may demand more than one object,

standard methods of auction generally result in allocative inefficiency. This paper proposes a

new ascending-bid method for auctioning multiple identical objects, such as Treasury bills or

communications spectrum. The auctioneer announces a current price, bidders report back the

quantity demanded at that price, and the auctioneer raises the price. Objects are awarded to

bidders at the current price whenever they are “clinched,” and the process continues until the

market clears. With pure private values, the proposed (dynamic) auction yields the same

outcome as the (sealed-bid) Vickrey auction, but may be simpler for bidders to understand and

has the advantage of assuring the privacy of the upper portions of bidders’ demand curves. With

interdependent values, the proposed auction may still yield efficiency, whereas the Vickrey

auction fails due to a problem which could be described as the “Champion’s Plague.”
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The auctions literature has provided us with two fundamental prescriptions guiding effective

auction design. First, an auction should be structured so that — conditional on winning — the price paid

by a player is as independent as possible of that player’s own bids (William Vickrey, 1961). Ideally, the

winner’s price should depend solely on opposing participants’ bids — as in the standard sealed-bid,

second-price auction — so that each participant has full incentive to truthfully reveal her value for the

good. Second, an auction should be structured in an open fashion which maximizes the information which

is available to each participant at the time she places her bids (Paul R. Milgrom and Robert J. Weber,

1982a). When there is a common-value component to valuation and when bidders’ signals are affiliated,

an open ascending-bid format may induce participants to bid more aggressively (on average) than in a

sealed-bid format, since participants can infer greater information about their opponents’ signals at the time

they place their final bids.

In single-object environments, these dual prescriptions are often taken to imply the desirability of

the English auction and to explain its prevalence (see, for example, the surveys of Milgrom, 1987, and

R. Preston McAfee and John McMillan, 1987). However, in multiple-object environments, nobody has

before combined these two broad insights and taken them to their logical conclusion. The current article

does precisely that: I propose a new ascending-bid auction format for multiple objects which literally takes

heed of the two overriding auction-design prescriptions.

Simplicity or transparency to bidders should be viewed as one important attribute and advantage

of the proposed auction. While the single-object Vickrey auction is well known, the multi-unit auction

proposed by Vickrey in the same 1961 article remains relatively obscure even among economists, and is

hardly ever advocated for real-world use. One reason seems to be that many believe it is too complicated

for practitioners to understand. For example, Barry J. Nalebuff and Jeremy I. Bulow (1993), in comments

to the Federal Communications Commission (FCC) on behalf of Bell Atlantic, describe the Vickrey

auction only to conclude (p. 29): “However, experience has shown that even economics Ph.D. students

have trouble understanding the above description. ... The problem is that if people do not understand the

payment rules of the auction then we do not have any confidence that the end result will be efficient.”

By contrast, I will claim that my ascending-bid auction design is simple enough to be understood by any

aficionado of baseball pennant races or similar sports contests.

Indeed, the subtlety of the Vickrey auction has been a problem even in experimental auction

studies involving merely a single object. John H. Kagel, Ronald M. Harstad and Dan Levin (1987) found

that bidders with affiliated private values behaved closer to the dominant strategy in ascending-clock

auctions than in sealed-bid second-price auctions. They conclude (p. 1300): “The structure of the English

clock auctions makes it particularly clear to bidders that they don’t want to bid above their private values.

Once the clock price exceeds a bidder’s value, it is clear that competing further to win necessarily involves

losing money. ... This enhanced capacity of the English clock institution to produce observational

learning distinguishes it most clearly, on a behavioral level, from the second-price institution.” Even in

contexts where the traditional theory finds no informational advantages to a dynamic auction over a static

auction, there are still likely to be simplicity or transparency gains associated with the ascending-bid

design in putting Vickrey’s sweeping insights into practical use.
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Privacy-preservationof the winning bidders’ values is a second attribute and advantage of the new

ascending-bid auction. Noting that English auctions are quite prevalent while sealed-bid second-price

auctions are exceedingly rare in the real world, Michael H. Rothkopf, Thomas J. Teisberg, and Edward

P. Kahn (1990) offer an explanation for the nonuse of the Vickrey auction: bidders will be reluctant to

truthfully reveal their private values in an auction if either there may be cheating by the auctioneer or there

will be subsequent auctions or negotiations in which their private information is relevant to the outcome

(and can be used against them).1 For example, suppose that the government auctions a spectrum license

which the highest bidder values at $1 billion but the second-highest bidder values at only $100 million.

In a second-price auction, the high bidder is supposed to win the license but pay only $100 million. There

are at least three problems here. First, there is likely to be a public relations disaster, as the ensuing

newspaper headlines read, “Billion-dollar communications license given away for a fraction of its value.”

Second, there may be a problem of cheating by the seller: after opening the submitted bids, the auctioneer

may ask his friend, “Mind if I insert a bogus $997 million bid in your name? It won’t cost you anything,

but it will make me a lot of money.” Third, widespread knowledge of the winner’s billion-dollar bid may

imperil her subsequent bargaining position with equipment suppliers. Such considerations favor ascending-

bid auctions, since winning bidders need not reveal their entire demand curves, only the portion below

the winning price. For example, after an English auction in the hypothetical situation, all that is revealed

is that the second-highest bidder valued the license at $100 million, and that the high bidder valued the

license at something over $100 million.

However,allocative efficiency, more than anything else, is the decisive attribute and advantage

afforded by my auction. For a class of environments where bidders’ assessments of valuation depend on

the information possessed by opposing bidders, the main theorem of this article demonstrates that the

proposed (dynamic) auction yields efficient outcomes. By way of contrast, it is also shown that the

(sealed-bid) Vickrey auction cannot generate efficiency. Recall the Winner’s Curse: in single-object

auctions, a bidder’s expected value conditional on winning is less than her unconditional expected value.

Extending this reasoning to multi-unit auctions yields an effect which I refer to as the “Champion’s

Plague”: a bidder’s conditional expected value is decreasing in the number of units she wins. Hence,

bidders even in the Vickrey auction have an informational incentive to shade their bids on higher

quantities relative to lower quantities, upsetting efficiency (which requires there to be no differential

shading).

The starting point for understanding the design proposed herein is to think of multiple-object

auctions as “share auctions” (Robert Wilson, 1979). Recall that the classic English auction for a single

object can be sensibly collapsed down to a sealed-bid auction, in which participants simultaneously submit

bids, the auction “price” is defined to be the second-highest bid, and the highest bidder is awarded the

object for this price. Analogously, existing ascending-bid auction designs for multiple objects can be

sensibly collapsed down to a share auction, in which participants simultaneously submit bids consisting

of demand curves, the auction “price” is defined to be the price at which supply equals demand, and each

1Richard Engelbrecht-Wiggans and Charles M. Kahn (1991) and Rothkopf and Harstad (1995) also provide models
emphasizing the importance of protecting the privacy of winners’ valuations.
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participant is awarded the quantity which she demanded at this uniform, market-clearing price. For

example, the simultaneous multiple-round auction whereby the FCC auctioned 10 nationwide pager

licenses in July 1994 resulted in essentially identical licenses selling for virtually identical prices.

Similarly, the open, ascending-bid auction proposed (but, to date, not implemented) for U.S. Treasury

securities would utilize a uniform, market-clearing price (Joint Report on the Government Securities

Market, 1992, pp. B23−B24).

While uniform-price share auctions may seem to be the appropriate multiple-object generalization

of the second-price auction for a single object, they in fact create incentives for bidders to engage in

“demand reduction.” This inevitably gives rise to allocative inefficiency, and often diminishes seller

revenues. In Lawrence M. Ausubel and Peter C. Cramton (1996), for virtually any multiple-object

environment in which (i) bidders have tastes for consuming more than one object and (ii) there is any

private-values component to bidder valuations, we prove that any Bayesian-Nash equilibrium of a uniform-

price auction yields an inefficient outcome (i.e., objects are allocated to bidders other than those who value

them the most) with positive probability.2

By way of contrast, the Vickrey auction is an effective design when bidders with pure private

values have tastes for consuming more than one object. By the “Vickrey auction” for identical objects,

I mean the following sealed-bid auction procedure, proposed in Vickrey (1961). First, bidders

simultaneously and independently submit demand functions specifying the quantity of objects which they

desire at each possible price. (Quantities may be restricted to be integers, in the case ofM indivisible

objects, or may be allowed to be continuous, in the case of perfectly-divisible objects.) Second, the

auctioneer determines the price at which supply equals demand, and awards each bidder the quantity she

demanded at this market-clearing price. Third, the price which each bidder pays for an object is

determined to be the bid which she displaces, i.e., the price charged each bidder for each object is the

opportunity cost of assigning the object to that bidder.

In the case ofM indivisible objects, each bidder submits up toM bids. Submitted bids are ranked

in descending order, and the objects are awarded to the bidders associated with theM highest bids. A

bidder pays the amount of the highest rejected bid (other than her own) for her first object, the second-

highest rejected bid (other than her own) for her second object, and so on, paying thekth highest rejected

bid (other than her own) for herkth object. For perfectly-divisible objects, the outcome for bidderi in

the Vickrey auction is depicted in Figure 1. In that figure,qi(p) denotes the demand function submitted

by bidderi , M − q−i(p) denotes the residual supply after subtracting out the demands of all other bidders,

p* denotes the market-clearing price if bidderi participates in the auction, andp−i
* denotes the market-

clearing price which would have resulted in the absence of bidderi . The Vickrey auction awards a

quantity ofqi(p
*) to bidderi , and requires a payment denotedPi , which is the area of the shaded region

in Figure 1. Thus, each participants’ payment (conditional upon winning a given quantity) is independent

of her own bids, embodying the first prescription of auction design.

2There are essentially only two multiple-object environments which escape the inefficiency theorem of Ausubel and Cramton
(1996). First, when each bidder can consume at most a single unit of the good, efficiency is readily attainable (Milgrom and
Weber, 1982b). Second, in a purely-common-value environment, every allocation is equally efficient.
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The questions under consideration may now be stated:

Can the analogy between the English auction and the second-price auction be completed for

multiple objects: i.e., Does there exist an ascending-bid auction for multiple objects

whose static representation is Vickrey’s sealed-bid auction, when bidders have pure

private values?

To the extent that the analogy can be completed, what is the comparison between the sealed-bid

auction and the analogous ascending-bid auction, when each bidder’s value depends on

other bidders’ information?

This article provides substantial answers to each of these two questions. A new ascending-bid auction is

proposed for multiple identical objects and close substitutes, which satisfies the following analogy:

The second-price auction is to the English auction, as the multi-unit Vickrey auction is to the auction

proposed herein. Furthermore, in a setting with interdependent values which strictly generalizes the

Milgrom and Weber (1982a) framework, the new (dynamic) auction format outperforms the (static)

Vickrey auction on efficiency considerations.

While the focus of this article is on auction efficiency, other research indicates that this also bears

a close relationship to revenue maximization. Indeed, in the symmetric constant-marginal-values demand

structure examined in this article, Ausubel and Cramton’s (1996) Theorem 6 demonstrates that if the seller

is constrained to distribute all units of the good (i.e., constrained to set a reserve price of zero), then the

seller’s expected revenue is maximized by using the efficient allocation rule.3 The intuition for this result

is that a bidder’s willingness-to-pay in an auction is related to the amount in surplus she can expect to

attain in the ultimate allocation; the more in gains from trade which are attained, the higher that

participants are willing to bid. With more general demand structures, while the goals of revenue

maximization and efficiency are only imperfectly aligned, they should not be viewed as necessarily

running counter to one another.

Moreover, while the focus of most auction theory research has been on situations where resale of

objects is precluded, it should be observed that the formal introduction of resale into the model is likely

to only strengthen the conclusions of this article. Compare two trading structures in an environment with

independent private values. Let the first trading structure consist of an auction which yields efficient

allocations (so that no post-auction resale market is necessary), and let the second trading structure consist

of an inefficient auction followed by an efficient resale market. Since both of these trading structures

ultimately result in the efficient allocation of the objects, the total realized surplus from the two trading

structures is equal, i.e.,

3If the seller is not required to distribute all units of the object, then for a symmetric constant-marginal-values demand
structure, Theorem 6 of Ausubel and Cramton concludes that the seller maximizes revenue by efficiently allocating the objects,
subject to the imposition of a reserve price. This is readily accomplished using the auction format proposed in this article, only
with the auction clock starting its ascent from the desired reserve price.



5

Bidder Payoffs1 + Seller Revenues1 + Transaction Costs of Resale Market1 =
= Bidder Payoffs2 + Seller Revenues2 + Transaction Costs of Resale Market2.

However, by the reasoning of the Revenue Equivalence Theorem, each trading structure should yield the

bidders the same interim payoffs, i.e., Bidder Payoffs1 = Bidder Payoffs2. Meanwhile, the presence of

broker commissions, trading delays, and the like means that Transaction Costs of Resale Market2 > 0,

whereas the Transaction Costs of Resale Market1 = 0 (given that resale is unnecessary). Hence, we

conclude that Seller Revenues1 > Seller Revenues2. The seller revenues from a market structure with an

efficient auction should exceed the seller revenues from a market structure with an inefficient auction.

The following articles constitute a less-than-exhaustive list of related research. Edward H. Clarke

(1971) and Theodore Groves (1973) introduce dominant-strategy mechanisms for dissimilar objects which

parallel Vickrey’s auction for identical objects. Milgrom and Weber (1982b, pp. 4−5) introduce the

standard ascending-bid auction when bidders have unit demands and there are multiple identical objects,

and extend their (1982a) analysis of symmetric environments with affiliated information to this multi-unit

context. Kevin A. McCabe, Stephen J. Rassenti, and Vernon L. Smith (1990, 1991) study the standard

ascending-bid auction when bidders have unit demands and there are multiple identical objects, obtaining

both theoretical and experimental results. Eric S. Maskin (1992) demonstrates that, for single-object

auctions with asymmetric bidders and interdependent information, the English auction is more likely to

yield efficiency than the second-price auction. Maskin and John G. Riley (1989) examine optimal auctions

for multiple identical objects in an independent private values setting. Partha Dasgupta and Maskin (1997)

define a sealed-bid auction designed to attain efficiency with multiple dissimilar objects. Alexander S.

Kelso and Vincent P. Crawford (1982), Gabrielle Demange, David Gale, and Marilda Sotomayor (1986),

Sushil Bikhchandani and John W. Mamer (1996), Bikhchandani (1996), and Faruk Gul and Ennio

Stacchetti (1997a,b) study various auction procedures for multiple objects and their relationship with

Walrasian prices and/or efficient allocations under complete information. Vijay Krishna and Motty Perry

(1997) study the Vickrey auction in an independent private values setting. In Ausubel and Raymond J.

Deneckere (1993), we perform a related analysis in a different context, constructing a dynamic procedure

which replicates the efficient static mechanism for incomplete-information bargaining.

The current article is organized as follows. Section 1 informally presents the new ascending-bid

auction via an illustrative example which any aficionado of pennant races ought to understand. Section

2 continues to informally describe many of the main themes of the paper by showing why other auction

formats yield inefficient outcomes for the illustrative example. Section 3 provides a formal specification

of the auction as a continuous-time game. Section 4 establishes the main results under pure private values.

Section 5 treats a “general symmetric model” where bidders’ signals are affiliated and their values depend

on other bidders’ signals. Section 6 demonstrates that the new ascending-bid auction outperforms the

Vickrey auction in the general symmetric model. Section 7 works out the equilibrium bidding strategies

for a symmetric example. Section 8 concludes. Proofs are relegated to Appendix A, and a modified

Vickrey auction for bidders with interdependent values is described in Appendix B.
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1 An Illustrative Complete-Information Example

I begin by illustrating my proposal for an ascending-bid, multiple-object auction with an example

loosely patterned after the FCC’s auction for nationwide pager licenses in July 1994.

EXAMPLE 1. Suppose that there are five identical licenses for auction.4 Each bidder has taste

for more than one license, but bidders are each limited to winning at most three licenses.5 There are six

bidders with values in the relevant range, and their marginal values are given as follows (where numbers

are expressed in millions of dollars):

(1) Bidder A: vA,1 = 123
vA,2 = 113
vA,3 = 103

Bidder B: vB,1 = 75
vB,2 = 5
vB,3 = 3

Bidder C: vC,1 = 125
vC,2 = 125
vC,3 = 49

Bidder D: vD,1 = 85
vD,2 = 65
vD,3 = 7

Bidder E: vE,1 = 45
vE,2 = 25
vE,3 = 5

Bidder F: vF,1 = 49
vF,2 = 9
vF,3 = 3

The above are marginal values for a first, second, and third license, respectively. For example, if Bidder

A were to purchase two licenses at prices of 80 each, his total utility from the transaction would be

computed by: vA,1 +vA,2 − 80 − 80 = 123 + 113 − 160 = 76 . In this example, bidders are presumed to

possess complete information about their rivals’ valuations.

4In actuality, the FCC’s nationwide narrowband auction offered ten licenses, of three different types: five (essentially
identical) 50/50 kHz paired licenses; three (essentially identical) 50/12.5 kHz paired licenses; and two (essentially identical) 50
kHz unpaired licenses. For an extraordinarily cogent discussion of the nationwide narrowband auction, see Cramton (1995).

5In actuality, the FCC limited bidders to acquiring three licenses, either through the auction or through resale. Observe that
the total number of licenses is not an integer multiple of each bidder’s limitation on purchases, so with incomplete information,
the inefficiency result of Ausubel and Cramton (1996, Theorem 1) is applicable, even if the marginal values for the first, second,
and third licenses are equal. However, to make the following discussion straightforward, I will be assuming below that bidders
have complete information about their competitors’ values.
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1.1 The Auction Play-by-Play

The proposed new auction is a particular specification of rules for what might be referred to

generically as an “ascending-clock auction.”6 The auctioneer starts the auction at a reserve price ofp0

and proceeds to increment a continuously-ascending price clock. At each price, bidders simultaneously

indicate how many licenses they are willing to purchase at the current unit price. For example, each

bidder might be provided four cards stating “0”, “1”, “2” and “3”, respectively, and each bidder holds up

the appropriate card at each price. Alternatively, bidders may be provided with levers or buttons

permitting them to declare their quantity at each price, or may be equipped with electronic terminals which

permit them to enter their demands. The quantity is required to be a nonincreasing function of price;7

and, for the moment, we will assume that each bidder can fully observe the quantities demanded by each

of her rivals. When a price,p*, is reached such that aggregate demand no longer exceeds supply, the

auction is deemed to have concluded, and each bidderi is then assigned the quantityqi(p
* ) she demanded

at the final price. However, as we shall soon see, a winning bidder isnot necessarily charged a unit price

of p*.

We shall now trace the progress of bidding by the posited bidders with marginal values given in

eqs. (1), under the hypothesis that players bid sincerely; later, the sincere-bidding hypothesis will be

justified. The bidding can also be followed in Table 1.

Let us say thatp0 = $10 million. Then the auction opens with the auctioneer announcing a price

of $10 million. Bidders A−F indicate demands of 3, 1, 3, 2, 2 and 1, respectively. The aggregate demand

is 12, whereas the available supply is only 5, so the auction must proceed further. The auctioneer begins

to continuously increment the clock. The next change in demands occurs when the price reaches

$25 million. As vE,2 = 25, Bidder E drops her quantity demanded from 2 to 1, reducing the aggregate

demand to 11. Still, the auction must proceed further. Since no bidder possesses a marginal value

between $25 million and $45 million, at any quantity, nothing changes until the price reaches $45 million.

There, however, the action begins to get more exciting. Bidder E drops out of the auction

completely at $45 million (sincevE,1 = 45), Bidder F drops out of the auction completely at $49 million

(sincevF,1 = 49), and Bidder C reduces her quantity demanded from 3 to 2 at $49 million (sincevC,3 = 49).

The aggregate demand is now reduced to 8. In the unlikely event that a television sportscaster were

reporting on this auction, the sportscaster could now remark (in standard American sportswriting jargon):8

6The economics literature has sometimes referred to auction formats where the auctioneer — as opposed to bidders —
continuously raises prices as the “Japanese auction” (see, for example, Milgrom and Weber, 1982a, p. 1104). However, this
terminology appears to be based on an erroneous reading of Cassady (1967); and such an auction format appears to bear no
relation to Japan. Consequently, this author seeks to help erase the “Japanese auction” terminology from the lexicon, and to
instead encourage the use of the “ascending-clock auction” terminology.

7In the actual nationwide narrowband auction, the activity rule was that each bidder could demand up to three licenses in
any round, provided that she had demandedat least onein the previous round. (See, Cramton, 1995, p. 337.)

8Readers not familiar with the usage of “clinch” and “magic number” in this article (or seeking insight into the history of
thought behind the proposed new auction design) are referred to Joseph Durso, “Mets Down Cards, 3−2, in 11th and Hope to
Clinch Title Today; Cubs Lose,”The New York Times, September 24, 1969, p. 38:

The Mighty Mets — who have never clinched anything more grand than ninth place — clinched
at least a tie for the Eastern Division championship of the National League last night when they defeated
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“Bidder A now has a magic number of one. The moment that any other bidder

reduces her demand by a single unit, all competition for Bidder A’s first license will have

been mathematically eliminated. Nonetheless, it is still possible that Bidder A is going

to go home from this contest without a prize.”

Nothing further changes until a price of $65 million is reached, and until then the fans remain in suspense.

The outcome begins to be determined with some finality when the price crosses $65 million.

Observe that this prompts Bidder D to reduce her quantity demanded from 2 to 1, asvD,2 = 65, dropping

the aggregate demand to 7. The sportscaster could now accurately exclaim:

“Bidder A has now mathematically guaranteed herself at least one license! The

aggregate demand of all competitors other than Bidder A has dropped to 4, so no matter

what any bidder does now, Bidder A goes home with at least one license. Bidder A has

clinched winning a license!”

It is important to observe, at this juncture, that nothing irrevocable has yet occurred insofar as Bidders B,

C, or D winning licenses; no other units have yet been “clinched”. However, Bidder C’s “magic number”

has dropped to one; any further reductions by any bidder besides C assures Bidder C at least one license.

The excitement builds when the price reaches $75 million. Observe that this prompts Bidder B

to drop out of the auction, asvB,1 = 75, reducing the aggregate demand to just 6, for an auction offering

5 licenses. The sportscaster’s commentary continues:

“Bidder C now has also mathematically assured herself a license, and Bidder A

now has clinched herself a second! No matter what any bidder does now, Bidder C

knows she is going home with at least one license, and Bidder A knows she is going home

with at least two.”

The auction ends when the price attains a level of $85 million. Bidder D now drops out of the

auction, asvD,1 = 85, reducing the aggregate demand to just 5, thus equating demand with supply.

the St. Louis Cardinals, 3−2, in 11 innings. . . .

As a result, the Mets won their fourth straight game and the 17th in their last 21, and they
stretched their lead over the Chicago Cubs to six games with six to play.

They also reduced their “magic number” for winning the uncontested prize to one. That is, one
more victory for the Mets or one more defeat for the Cubs — who lost to Montreal earlier in the day —
will pop the corks in Shea Stadium.

The reader is also referred to Leonard Koppett, “Mets Win and Clinch Eastern Crown,”The New York Times, September 25,
1969, p. 1:

With a flourish worthy of the occasion, the New York Mets officially won their first championship
last night by beating the St. Louis Cardinals, 6−0, in the presence of 54,928 paying spectators fully prepared
for the ecstasy of the victory.

By scoring their 96th triumph of the baseball season, the Mets clinched first place in the Eastern
Division of the National League . . .

As the players raced for the clubhouse for their own celebration, thousands of spectators leaped
railings and quickly filled the field, roaring and chanting “We’re No. 1.”

The author of this article (then nine years old) was one of the 54,928 paying spectators at the September 24 game.
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Bidder A wins three licenses and Bidder C wins two licenses, which is the efficient outcome (placing all

licenses in the hands who value them the most).

1.2 Payments in the Alternative Ascending-Bid Auction

Thus far, the auction description has coincided with standard specifications of an ascending-bid,

multiple-object auction. What remain to be specified, however, are the payments owed by each of the

winners. If we impose uniform-price rules — as in the open ascending-bid Treasury auction proposed in

the Joint Report on the Government Securities Market, or as implied by arbitrage in the FCC’s

simultaneous multiple-round auction — each winner would be obliged to pay $85 million per license,

following the bidding of Section 1.1. (However, be cautioned that the sincere-bidding strategies of Section

1.1 wouldnot constitute a Nash equilibrium under uniform-price rules, as we will shortly see.)

The play-by-play exposition of Section 1.1 makes it trivial to describe the payment rule advocated

in this paper. Indeed, the “clinching” metaphor is quite descriptive, and permits the definition of the

proposed new auction format:

ALTERNATIVE ASCENDING-BID AUCTION. The auctioneer operates a continuously-

ascending clock. For each price,p, each bidderi simultaneously indicates the quantity,

qi(p), she desires, where demands are required to be nonincreasing in price. When a

price,p*, is reached such that aggregate demand no longer exceeds supply, the auction is

deemed to have concluded. Each bidderi is then assigned the quantityqi(p
* ), and is

charged the standing prices at which she “clinched” the respective objects.

(The notion of “clinching” will be rigorously defined in eq. (2), below.)

Thus, corresponding to the play-by-play of Section 1.1, Bidder A would win one license for a

price of $65 million, one license for $75 million, and one license for $85 million. Bidder C would win

one license for $75 million and one license for $85 million. Indeed, whenever bidders have pure private

values, we will see in Section 4 below that sincere bidding is always an equilibrium, yielding an efficient

assignment of the objects. Furthermore, given bidders’ values as specified in eqs. (1), it is possible to

show that — following elimination of weakly-dominated strategies — this is the unique assignment of the

objects associated with any subgame-perfect equilibrium of the alternative ascending-bid auction.9

9To begin, observe that it is weakly dominant for any bidderi to stay in for at least one object at all prices belowvi,1, and
to drop out completely when the price crossesvi,1. Consequently, 45 constitutes a floor on price: indeed, since all six bidders
havevi,1≥ 45, no objects can be clinched, in equilibrium, at prices below 45. Next, observe that Bidder A can assure herself
three objects clinched at prices no higher than 65, 75 and 85, guaranteeing her surplus of at least 114, merely by maintaining
a demand of 3; and Bidder C can assure herself two objects clinched at prices no higher than 75 and 85, guaranteeing her
surplus of at least 90, merely by maintaining a demand of 2. By contrast, if A were to settle for one object, her surplus would
be bounded above by 80; and if B were to settle for one object, her surplus would be bounded above by 82. Hence, each of
Bidders A and C will never drop below a demand of 2 in equilibrium. Moreover, since Bidder F will never drop out until a
price of 49 and Bidder B will never drop out until a price of 75, the most surplus that Bidder A could earn by winning two
objects is to clinch one object at 49 and clinch one object at 75, for surplus of only 112. We conclude that Bidder A will never
drop below a demand of 3 in equilibrium, establishing the uniqueness of the equilibrium assignment of the objects.
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2 Illustrative Example Continued: Other Auction Formats

2.1 The Standard Ascending-Bid Auction

Most previous attempts to define simultaneous dynamic auctions of multiple objects have exhibited

theuniform-price property: similar objects tend to sell for similar prices. For example, in contrast to the

alternative ascending-bid auction, one could have defined its uniform-price counterpart:

STANDARD ASCENDING-BID AUCTION. The auctioneer operates a continuously-

ascending clock. For each price,p, each bidderi simultaneously indicates the quantity,

qi(p), she desires, where demands are required to be nonincreasing in price. When a

price,p*, is reached such that aggregate demand no longer exceeds supply, the auction is

deemed to have concluded. Each bidderi is then assigned the quantityqi(p
* ), and each

bidder i is charged a unit price ofp*.

Suppose that bidders’ values are commonly known to be exactly as described in eqs. (1), but the standard

ascending-bid auction is used to sell the objects. In this particular example, one can argue that: (1)

“sincere bidding” by all bidders is no longer a Nash equilibrium; (2) any equilibrium following elimination

of weakly-dominated strategies is inefficient (compared to the equilibrium of the alternative ascending-bid

auction, which is efficient); and (3) any equilibrium following elimination of weakly-dominated strategies

results in lower seller revenues (compared to the equilibrium of the auction design advocated here).10

Let us suppose that Bidders B−F are using the “sincere bidding” strategy, and let us determine

the best response of Bidder A. Consider the juncture described in the play-by-play above, at the moment

when price crosses $75 million. Recall that Bidders A−F indicate demands of 3, 0, 2, 1, 0 and 0,

respectively; see Row 6 of Table 1. Moreover, it is a weakly-dominant strategy for Bidder D to maintain

a quantity of 1 until price reaches 85, and to then reduce her quantity to 0. Bidder A recognizes that she

has two options: she can continue to bid sincerely, resulting in the winning of 3 objects at a price of 85;

or she can immediately reduce her demand to 2, thereby stopping the auction at a price of 75. Observe

that the second option yields higher payoff than the first option: Bidder A’s surplus from 3 objects at 85

equals $84 million; whereas her surplus from 2 objects at 75 equals $86 million.11 Thus, sincere bidding

is not an equilibrium; and, indeed, the price never rises above 75 in any equilibrium surviving elimination

10Before proceeding, the reader should be forewarned that the above example was constructed partly as a propaganda point,
and that it is easy to also construct complete-information examples in which each of these conclusions is reversed. However,
I believe that it is appropriate to make the propaganda point here, since there exists an independent private values specification
for which each of the three conclusions holds as a general proposition. (To be somewhat more precise, Ausubel and Cramton,
1996, prove that when bidders have constant marginal values which are independently distributed, the uniform price auction
will generally lead bidders to reduce their demands below sincere levels, do not possess efficient Nash equilibria, and yield lower
seller revenues than the Vickrey auction and the alternative ascending-bid auction.) But the exposition is much more
straightforward under complete information than with private information. So I apologize to readers for perhaps making more
of a complete-information example than is justified.

11Moreover, if Bidder C performs the analogous calculation, she finds that she prefers winning 2 objects at 85 over winning
1 object at 75. Since Bidder C knows that the auction must conclude by the time price reaches 85 (given Bidder D’s dominant
strategy), Bidder C will not prematurely reduce her demand at a price of 75, forcing the hand of Bidder A.
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of weakly-dominated strategies. Consequently, Bidder D must win a unit, implying that all equilibria of

the standard ascending-bid auction which survive elimination of weakly-dominated strategies are

inefficient.12

This inefficient equilibrium outcome yields $18 million less in surplus (the difference between

Bidder A’s marginal value for 3 and Bidder D’s marginal value for 1) than the efficient allocation under

the alternative auction design. The outcome is also suboptimal from the perspective of seller revenues:

it yields $375 million in revenue; whereas the alternative auction design, despite giving away one license

at a bargain $65 million, yielded $385 million in revenue.

2.2 Other Dynamic Auction Formats

Another dynamic approach for auctioning multiple objects is the simultaneous multiple round

auction used by the Federal Communications Commission to assign spectrum licenses. Rather than the

bidders indicating quantities of objects, the bidders actually name prices on individual objects; the auction

is not deemed to have concluded for any single object until the bidding stops on all the objects. In such

an auction format, there is a fairly strong tendency toward arbitrage, so that similar objects sell for similar

prices. Most strikingly, in the real-world Nationwide Narrowband Auction on which Example 1 was

patterned, the five virtually-identical 50/50 kHz paired licenses each sold for exactly $80,000,000;

however, some other auctions have displayed some degree of price discrepancy among similar licenses.

To the extent that the FCC’s simultaneous multiple round auction is conducted with small bid increments,

we should expect outcomes to display the uniform-price character and therefore we should expect

essentially the same inefficient equilibrium as from the standard ascending-bid auction.

Yet another approach to dynamically auctioning identical objects is to sell them successively, one

after another, by successive English auctions. This, for example, is how Sotheby’s attempted to auction

seven satellite transponders in November 1981 (see Milgrom and Weber, 1982b). Observe that there is

now a tendency towardintertemporalarbitrage, which again lends the auction process a uniform-price

character. Again, we will be able to argue for Example 1 that it is not an equilibrium in undominated

strategies for the objects to be allocated efficiently. If this were an equilibrium outcome, the price for

each object would necessarily be at least 85 — the marginal value of unsatisfied Bidder D. An efficient

equilibrium thus would again give Bidder A surplus of at most 84. However, Bidder A can deviate and

guarantee herself surplus of at least 86 by “throwing” the first three auctions, if necessary, to Bidder C

(two objects) and Bidder D (one object). Literally, Bidder A uses a strategy of only bidding up to a price

of 75 (+ε) until Bidders C and D have won their respective units. Then, with the high marginal values

out of the way, Bidder A can assure herself the last two objects at prices of 75 each, since 75 is then the

highest remaining unsatisfied marginal value. Indeed, it would seem that the unique equilibrium outcome

12Moreover, it is straightforward to argue that a price of 75, accompanied by Bidders A and C each winning two licenses
apiece and Bidder D winning one license, is theuniquesubgame-perfect equilibrium outcome following elimination of weakly-
dominated strategies. Observe that 45 is a floor on price, since all six bidders have marginal values for their first unit of at least
45. Furthermore, it is a weakly-dominated strategy for Bidder B to drop out of the auction at any price below 75 or for Bidder
D to drop out at any price below 85; meanwhile, Bidders A and C each prefer winning 2 objects at 75 to winning 1 object at
45, guaranteeing excess demand at all prices up to 75.



12

in undominated strategies is for Bidder A to win 2 objects, Bidder C to win 2 objects, and Bidder D to

win 1 object, all at prices of essentially 75.

2.3 Sealed-Bid Auction Formats

Let us also consider three sealed-bid formats for simultaneously auctioning multiple identical

objects.13 In each, the bidders simultaneously and independently submit up toM bids. The auctioneer

then ranks the tendered bids in descending order and awards the objects to the bidders who tendered the

M highest bids. The three auction formats differ in their payment rules. They are:

PAY-YOUR-BID AUCTION. A winning bidder pays the amount of her winning bids.

UNIFORM-PRICE AUCTION. A winning bidder pays a unit price equaling the highest rejected bid.

VICKREY AUCTION. A winning bidder pays the highest rejected bid (other than her own) for her first

object, the second highest rejected bid (other than her own) for her second object, etc.

In Example 1, the pay-your-bid and uniform-price auctions again have the property that all

equilibria in undominated strategies are inefficient. For the uniform-price auction, this follows the same

argument as before: an efficient equilibrium in undominated strategies need have a highest rejected bid

of 85, corresponding to Bidder D; and a next highest bid of 75, corresponding to Bidder B. Bidder A

easily calculates that she can improve her payoff by reducing her third bid below 75, so that she wins only

two objects. For the pay-your-bid auction, we can apply almost identical reasoning: in an efficient

equilibrium, the winning bids must all be at least 85; otherwise, unsatisfied Bidder D could profitably

deviate. But Bidder A could substitute two bids of 75 (+ε) for her three bids of 85 (+ε), as usual

increasing her payoff.14

By contrast, in the Vickrey auction, each winning bidder is charged a payment corresponding to

the opportunity cost of providing her the number of goods she wins. Thus, there are no incentives for

misrepresentation by bidders. The unique equilibrium in undominated strategies is efficient, and with

complete information, it corresponds precisely to the sincere-bidding equilibrium of the alternative

ascending-bid auction.

13Other sealed-bid auction formats are also possible. For example, Bikhchandani (1996) considers separate first-price
auctions held simultaneously for each of the individual objects, as well as separate second-price auctions held simultaneously
for each of the individual objects.

14The pay-your-bid and uniform-price auctions also possess efficient equilibria — but only if we allow bidders to use
weakly-dominated strategies. For Example 1, following Bikhchandani (1996), it is an efficient equilibrium of the pay-your-bid
auction if Bidder A submits three (winning) bids of 85 (+ε), Bidder C submits two (winning) bids of 85 (+ε), and Bidder
D submits three (losing) bids of 85. However, observe that this requires Bidder D (or other losing bidders) to place more than
one bid of 85, despite the fact that Bidder D’s marginal values for a second object — and all other bidders’ marginal values
— are well less than 85. If only one (losing) bid of 85 is tendered, Bidder A can profitably deviate by instead bidding only
75 (+ε), and settling for only two objects. Similar reasoning applies to the uniform-price auction.
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3 Formal Description of the Auction

3.1 Continuous-Time Game

The auction is formally modeled as a continuous-time game. However, our modeling should take

into account the possibility that bidderi’s strategy may be to reduce her quantity at a given time, while

bidder j’s strategy may be to reduce his quantity at the soonest possible instant after bidderi reduces her

quantity. Given that the game is continuous in time, our modeling ideally should allow “moves that occur

consecutively but at the same moment in time” (Leo K. Simon and Maxwell B. Stinchcombe, 1989,

p. 1181).

The game may be conceptualized by thinking of “time” as being represented by a pair, (t,s), where

t is given by a continuous ascending clock ands is given by a discrete ascending counter. Times are

ordered lexicographically: first int; and second ins. Generally speaking, the clock timet (and the

associated pricep(t)) increments continuously, and each bidder is free to reduce her quantity at any clock

time. However, if bidderi reduces her quantity at a given clock timet, bidderj is allowed to respond by

making his own reduction at the same clock timet (but, nevertheless, after bidderi’s move). This may

be conceptualized by using the counters: if bidder i reduces her quantity at (t,s), the next available time

which follows is (t,s+1). Each time that some bidder reduces her quantity, the counter increments instead

of the clock; and when players have finished reducing their quantities at the current clock time, the clock

restarts instead.

If price is a continuous and strictly-increasing function of time (e.g.,p(t) = p0+ t), we may

generally suppress both the clockt and the implicit counters from our notation. Ahistory h of the

auction game consists of a string of pairs:h ≡ (p0,q0), ... , (pL,qL). Together with the current price on

the clock,h fully summarizes the play of the game. Eachp denotes the price at the th occasion on

which one or more bidders strictly decreased her quantity, andq denotes the vector of quantities

demanded by bidders 1 , ... ,n beginning at that occasion. For every (0≤ <L), we require that

p +1 ≥ p . If p +1 > p , our interpretation is that all of the bidders demanded constant quantities ofq

at the half-open interval of prices [p ,p +1), and one or more bidders reduced her quantity at pricep +1.

If p +1 = p , our interpretation is that this is a situation where consecutive moves were made at the same

clock time (and price). LetC denote the vector of quantities clinched (defined formally in Section 3.2,

below) by bidders 1 , ... ,n given the history truncated at (p ,q ). Since the auction rules require bidders

to weakly decrease their quantities as the clock ascends, and given that clinched units have already been

won, we also require:C ≤ q +1 ≤ q (with the second inequality holding strictly for some bidder, so

that p +1 in fact refers to a price at which some bidder reduced her quantity).

Let xi denote the private signal received by bidderi , and letθi(h) denote the summary of the

history which is made observable to bidderi. If bidders are provided with full information about the past

play, thenθi(h) = h. However, the auction process might only make partial information available: for

example,θi(h) might be the sum of the quantities demanded by all the bidders in historyh, or θi(h) might

be a zero-one indicator of whether the auction is still open (in each case, together with the current quantity

demanded by bidderi in history h).
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A pure strategyfor bidder i is a pair of functions,βi(xi,θi(h)) and γi(xi,θi(h)), of private signals

and observable summaries of the history. To simplify notation, let us assume thatθi(h) = h. Thenβi(xi,h)

provides the lowest price at which bidderi will decrease her demand, andγi(xi,h) provides the quantity

to which she will decrease her demand, given that the history ish. Thus, βi : ×H → + and

γi : ×H → , where denotes the set of all possible (real-valued) signals,H denotes the set of all

possible histories, + denotes the set of (nonnegative, real-valued) prices, and denotes the set of

(nonnegative, integer-valued) quantities. To be consistent with the rules,γi(xi,h) < qi(h) , the quantity

demanded under the current historyh. Furthermore, if bidderi (impermissibly) attempts to reduce her

quantity below the amountCi(h) she has already clinched, the bid which will be entered isγi(xi,h) = Ci(h).

Whenever the auction reaches a point where the quantityqi(h) demanded by bidderi in history h equals

the amountCi(h) she has already clinched, bidderi no longer has available any legal moves and so

subsequently is no longer treated as an active player in the game.

Observe that the componentβi(xi,h) of strategy may be interpreted as providing the pricep at

which bidderi reduces her quantity, given historyh and the hypothesis that no other bidderj first reduces

his quantity at any price reached beforep. (The strategy need not incorporate the possibility that some

other bidder does reduce his quantity first, since then the history changes fromh to h′, and so bidderi

would instead play according to the strategyβi(xi,h′).) It is straightforward to see how anyn-tuple of

strategies generates a unique history. Suppose that a historyh of length and strategiesβi(xi,h )

(i =1,...,n) are given. Definep +1 = min { βi(xi,h ) i =1,...,n}; define I +1 = { i βi(xi,h )=p +1}; and

define qi
+1 = γi(xi,h ) if i ∈ I +1, and qi

+1 = qi otherwise. These definitions extend the history of

length to a unique history of length +1.

We will now consider two possible specifications of the auction rules.

3.2 Basic Specification of the Auction Rules

For any , defineQ = ∑
i

qi to be the aggregate demand by all bidders. We will refer to the

string h ≡ {( p0,q0), ... , (pL,qL)} as a final history if QL ≤ M but QL−1 > M, since the auction then

concludes at pricepL. We now define the allocation and payment associated with any final history, for

the basic specification of the auction rules.

First, suppose thatQ0 < M. Then we will say that the auction has “failed”: the available quantity

was not fully subscribed at the reserve price. Next, suppose thatQ0 ≥ M. Then the auction has succeeded

in the sense of fully allocating the available quantity of units at no less than the reserve price. We can

define the cumulative vector of quantitiesC clinched at prices up top by:

(2) Ci max 0 ,M −
j≠i

qj , for 0, ... ,L−1 and i 1, ... ,n .
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For =L, we may need to modify Eq. (2) by introducing rationing, ifQL < M. Various rationing rules

are possible; for example, we may specify proportional rationing, and so the following amounts will be

expected quantities assigned to the respective bidders:

Finally, from Eqs. (2)−(3), which provide cumulative amountsCi clinched at prices up top , we may

(3) CL
i q L

i











qL−1
i −q L

i

QL−1−Q L
M − Q L , for i 1, ... ,n .

define individual amountsci newly clinched at pricep by settingci
0=Ci

0 and:

Given the quantities clinched, as defined in Eqs. (2)−(3)−(4), we may now easily define the auction

(4) ci Ci − C −1
i for 1, ... ,L and i 1, ... ,n .

outcome associated with any final history:

Finally, observe that the formal specification of the alternative ascending-bid auction of Sections 3.1 and

(5) Allocation: qi CL
i , for i 1, ... ,n ,

(6) Payment:Pi

L

0

p ci , for i 1, ... ,n .

3.2 can be trivially modified to also provide a formal specification of the standard ascending-bid auction.

In the foregoing development, replace Eq. (2) with:

That is, if all “clinching” before the final price is discarded, then the basic specification of the alternative

(2′) Ci 0 , for 0, ... ,L−1 and i 1, ... ,n .

ascending-bid auction is immediately transformed into a basic specification of the standard ascending-bid

auction.

3.3 “Turning-Back-the-Clock” Specification of the Auction Rules

The basic auction rules, as specified in the previous Section 3.2, may be understood to have the

auction clock continuously ascend and — whenever, at any pricep , a bidder reduces her quantity

demanded — the clock pauses and then resumes ascending, restarting at the same pricep where it

stopped. However, there is no conceptual or game-theoretic reason why the clock necessarily need restart

at the same price as where it stopped. More generally, for any historyh ≡ (p0,q0), ... , (p ,q ), we could

just as easily have specified that the clock resume its continuous ascent starting at any pricer(h), where

r(h) need not necessarily equal the pricep where it stopped. Furthermore, once the functionr( ) is

specified, we will see that it is still possible to recover the full price path from the historyh (as in Eqs.

(7)−(8), below).

It will be seen in Section 4, below, that there is no particular motivation to use the more general

specification in a world of pure private values. However, in Section 5, where bidders’ values depend
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nontrivially on each others’ signals, we will see that there may be efficiency gains in specifying a restart

function r( ) with the property thatr(h) < p wheneverqj
−1 > qj = 0, i.e., whenever some bidderj

reduces her quantity to zero atp . (If this is not the case, we maintainr(h) = p .)

Generally, given any restart functionr( ) and any final historyh ≡ (p0,q0), ... , (pL,qL), the

progression of prices on the auction clock will be defined recursively, as follows. We will wantt to

denote the time (in the underlying continuous-time game) at which pricep appears on the clock, and we

will want p(t) to denote the complete mapping from times to prices (but observe thatp(t) may now be

discontinuous and so can no longer always reflect the prices at which the clock is restarted).

For convenience, let us parameterize price as a function of time in such a way thatdp/dt = 1 on all

segments where price is continuously ascending. To begin, for =0, we definet0 = 0 and, of course,

p(t0) = p0. Now suppose thatt0,...,t andp( ) (for t ∈ [ t0,t ]) have already been defined. We definet +1

inductively by:

where h denotes final historyh truncated at (p ,q ). The functionp( ) is extended to the interval

(7) t 1 t p 1 − r(h ) ,

(t ,t +1] by:

where it should be observed that Eq. (8) vacuously extends the definition ofp( ) if t +1 = t .

(8) p( t ) r (h ) t − t , for t∈( t ,t 1] ,

One simple example of a restart function with the desired “turning-back-the-clock” property is

developed as follows. Given any price pathp(t) already specified fort 0≤ t≤ t , we can define:

Using Eq. (9), we may easily define a simple restart function,r( ), for any truncated historyh , by:

(9) pmax( t ) max p( t ) t ∈ [ t0,t ] ,

whereR is a positive constant strictly less than one. The restart function specified by Eq. (10) has the

(10) r (h )







Rpmax( t ) , if q −1
j >qj 0 for somej 1, ... ,n ,

p , otherwise ,

following straightforward description. Generally speaking, the clock price ascends according top(t) = p0+ t,

with pauses at each time that some bidder reduces her quantity demanded. However, at each timet that

some bidder drops completely out of the auction, the clock is turned back to a price ofRpmax(t ), i.e., a

proportionR < 1 of the highest price which has thus far been attained. The clock then resumes its usual

ascent.

Apart from this periodic turning-back of the clock, the formal specification of the game is

analogous to that of Sections 3.1 and 3.2, above. Obviously, there is no longer any requirement in

histories thatp +1 ≥ p . We will now say that an auction has failed if not all units are clinched at prices

of at leastp0. A pure strategy may still be specified in terms of the lowest price at which a bidder will
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decrease her demand given the history, since price is stillpiecewisea continuous and strictly-increasing

function of time. The clinching, allocation, and payment rules continue to be defined by Eqs. (2) to (6).

In the following sections, we proceed to study the equilibria of the specified auction games.

4 Pure Private Values

Assume that a seller offersM indivisible units of a homogeneous good ton bidders. Each bidder,

i, obtains marginal utility ofVi,k from herkth unit of the good, fork=1, ... ,M. Thus, if bidderi obtains

qi units of the good for a total payment ofPi, she obtains a payoff of:

All bidders are assumed to exhibit (weakly) diminishing marginal utility, i.e.,Vi,k ≥ Vi,k+1 ≥ 0, for all i =1, ... ,n

qi

k 1

Vi,k − Pi , for i 1, ... ,n and qi 1, ... ,M .

andk=1, ... ,M−1. The marginal utilities,Vi,k ( i =1, ... ,n andk=1, ... ,M ) are privately observed by the

respective bidders, and are allowed to arise from an arbitrary joint distribution; thus, (Vi,1,...,Vi,M) and (Vj,1,...,Vj,M)

may be statistically independent of each other fori ≠ j , or they may be correlated in arbitrary ways.

However, bidders havepure private valuesin the sense that bidderi’s estimation of her own value is not

affected by bidderj’s estimation of his own value. (A symmetric model with interdependent values will

be analyzed in Section 5.)

As we allowed in Section 3.1, a wide variety of specifications of bidders’ information is possible.

Again, let h ≡ (p0,q0), ... , (pL,qL) denote the current history and letθi(h) denote the summary of the

history which is made observable to bidderi. Also, letp denote the current price on the ascending clock.

Bidder i is always assumed to be able to observep and her own demandqi
L. Three of the most sensible

of possible informational rules will now be considered:

FULL BID INFORMATION: The summary of the history observable to bidderi is:

θi(h) = h, i.e., the complete history of all bids by all bidders.

AGGREGATEBID INFORMATION: The summary of the history observable to bidder

i is: θi(h) = (p0,∑
j

qj
0),...,(pL,∑

j
qj

L), i.e., the history of the aggregate demand of all

bidders.

NO BID INFORMATION: The summary of the history observable to bidderi is:

θi(h) = 1, if ∑
j

qj
L > M; and 0, otherwise, i.e., whether the auction is still open.

The notion of “turning-back-the-clock” which we developed in Section 3.3 will not be necessary in the

pure private values context. Let us also define what is meant by “sincere bidding” in the context of a

dynamic auction:

SINCERE BIDDING: The use of the following strategy pair by bidderi after every

history h ≡ (p0,q0), ... , (pL,qL) will be referred to assincere bidding:
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The basic results for the case of pure private values are the following two theorems. The first theorem

β i (xi,h)







Vi,q L
i

, if Vi,q L
i

≥ p L ,

p L , otherwise,
γ i (xi,h)







max k Vi,k > β i (xi,h) , if Vi,1 > β i (xi,h) ,

0 , otherwise.

is most easily argued by observing that, with pure private values, the alternative ascending-bid auction

with no bid information is outcome-equivalent to the Vickrey auction, for which truthtelling by all bidders

is an efficient equilibrium in weakly-dominant strategies (Vickrey, 1961). The essence of the argument

is that in either the Vickrey auction or the alternative ascending-bid auction with opponents’ strategies

fixed, the only effect of changing one’s own bid strategy is to alter the quantity,qi
*, of units that bidder

i wins. However, conditional on the quantity of units won, the paymentPi
* of bidder i is invariant.

THEOREM 1. In the alternative ascending-bid auction with pure private values, (weakly)

diminishing marginal utilities, and no bid information, sincere bidding by every bidder is an efficient

equilibrium in weakly-dominant strategies.

Theorem 1 and all subsequent theorems are proved in Appendix A.

Once full or partial bid information is introduced, the alternative ascending-bid auction loses its

equivalence with the Vickrey auction. In particular, the dominant-strategy property is lost. For example,

suppose that for some bizarre reason, bidderj uses the strategy of maintainingqj = qj
0 so long asqi = qi

0,

but dropping toqj = 0 at the first available moment thatqi < qi
0. Then it is possible that bidderi may

strictly improve her payoff by decreasing her quantity toqi
0−1 at a pricep where her marginal utility for

a qi
0th unit still exceedsp. While the dominant-strategy property is lost, sincere bidding remains an

equilibrium of the auction:

THEOREM 2. In the alternative ascending-bid auction with pure private values, (weakly)

diminishing marginal utilities, and either full bid information or aggregate bid information, sincere bidding

by every bidder constitutes an efficient equilibrium.

By contrast, Ausubel and Cramton (1996, Theorems 1 and 5) demonstrate that, in essentially any

pure private values environment, the (sealed-bid) uniform-price auction does not possess any efficient

equilibria. [The one exception to the Inefficiency Theorem in a world of private values is that, if each

bidder has a constant marginal value up to a capacity ofλ, and if K ≡ M/λ is an integer, then the model

is essentially the same as that of aK-object auction where bidders have unit demands, and so the uniform-

price auction admits an efficient equilibrium.] The same reasoning easily extends to the standard

ascending-bid auction. Thus, the Vickrey auction and the alternative ascending-bid auction have the

substantial advantage — over their uniform-price counterparts — that they enable efficient outcomes in

a pure private values environment. As emphasized in the Introduction, the alternative ascending-bid

auction also offers advantages over the Vickrey auction: the auction may be simpler for participants to

understand; and protects the privacy of high values.
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5 Interdependent Values

In this section, we will depart from the world of pure private values, to consider a model in which

there is a common-value component to bidders’ values, i.e., any bidder’s value depends both on her own

signal and the other bidders’ signals. Bidder strategy will then differ between a dynamic auction and the

corresponding static auction, since a bidder may potentially learn or infer aspects of other players’

information in the course of the game. The model to be analyzed is symmetric, in two respects. First,

it is symmetricbetweenbidders, in the sense that their signals are drawn from the same distributions and

their values are given by the same functions of their own and others’ signals. (However, different bidders

will be permitted to have different capacities for the objects: an asymmetry which inevitably must be

allowed, since even starting with symmetry, it occurs in subgames which need to be considered.) Second,

the model is symmetricwithin bidders, in the sense that a bidder’s value for her first, second, third, etc.

object — up to her capacity — is equal.

However restrictive the model may be, the reader should observe that it is a strict generalization

of the general symmetric model of Milgrom and Weber (1982a,b). That is, restrict the numberM of

objects to equal one, and this reduces precisely to the (1982a) model; allowM > 1 but restrictλi = 1 for

i = 1, ...,n, and this reduces precisely to the (1982b) model.

5.1 The General Symmetric Model

Assume that a seller offersM indivisible units of a homogeneous good ton bidders. Each bidder,

i, obtains constant marginal utility ofVi from each of up toλi units of the good, but zero marginal utility

from any more thanλi units. Thus, if bidderi obtainsqi units of the good for a total payment ofPi , she

obtains payoff ofqiVi − Pi , for qi = 0,...,λi and 0 <λi ≤ M. We will refer toλi as thecapacityof bidder

i. Let the capacities be sufficiently large that there is competition for every unit of the good. The

marginal valuesVi ( i =1, ... ,n) are assumed to derive from affiliated signals. LetX ≡ (X1, ... ,Xn) be a

vector of n real-valued signals which are privately observed by then respective bidders. Also letX−i

denote the (n−1) signals observed by all agents excepti, without the identities of the individual bidders

indicated. Following Milgrom and Weber (1982a), it will be assumed that:

A.1 Vi = u(Xi,X−i) , whereu( ) is the same nonnegative-valued function for eachi ( i =1, ... ,n),

u( ) is continuous in all its arguments,u( ) is strictly increasing in its first argument, and

u( ) is nondecreasing in its remaining arguments.15

A.2 E[ Vi ] < ∞ , for eachi ( i =1, ... ,n).

A.3 The variables (X1, ... ,Xn) are affiliated.

15As noted by Milgrom and Weber (1982a, p. 1100), the “nondegeneracy assumption” that a bidder’s expected value is
strictly increasing in her own signal is unnecessary for the results to hold, but greatly simplifies the proofs.



20

A.4 The joint density,f( , ... , ) , of (X1, ... ,Xn) is symmetric in its arguments.

Loosely speaking, the affiliation assumption A.3 requires that the agents’ signals,Xi , are nonnegatively

correlated with one another. More precisely, letx andx′ (each points in n) be possible realizations of

(X1, ... ,Xn). Let x ∨ x′ denote the componentwise maximum ofx and x′, and letx ∧ x′ denote the

componentwise minimum. We say that (X1, ... ,Xn) areaffiliated if f(x ∨ x′) f(x ∧ x′) ≥ f(x) f(x′), for all

x andx′ (see Milgrom and Weber, 1982a, p. 1098). Let us also define:

EFFICIENCY: An equilibrium is efficient if the objects are assigned to the

bidders with the highest signals, for almost every realization of the signals (X1 , ... ,Xn).

An equilibrium isallocatively-efficientif the objects are assigned to the bidders with the

highest values, for almost every realization of the signals (X1, ... ,Xn).

Clearly, it is straightforward to define an additional assumption under which efficiency and allocative

efficiency coincide. LetX−ij denote any (n−2)-tuple of signals received by all bidders excepti and j. We

may assume:

A.5 u(Xi ;Xj ,X−i j ) > u(Xj ;Xi ,X−i j ) wheneverXi > Xj .

Moreover, allocative efficiency is typically the concept which will be of economic interest. Nevertheless,

all of the following results will not depend on assumption A.5; we add this as an assumption whenever

we wish to be able to make a statement concerning allocative efficiency.

If desired, one could also add a vectorS ≡ (S1, ... ,Sm) of additional variables, some of which

might be observed by the seller, which also influence the value of the objects to the bidders (as in

Milgrom and Weber, 1982a). In the interest of notational brevity, this will not be done here.

5.2 An Efficient Equilibrium of the Alternative Ascending-Bid Auction

In this section, we utilize the “turning-back-the-clock” specification of the auction rules of Section

3.3, and we construct a simple and efficient equilibrium of the alternative ascending-bid auction.16

Subsequent sections will compare the constructed equilibrium with those of other sealed-bid and

ascending-bid auction forms.

The intuition behind the constructed equilibrium is rather straightforward. The equilibrium bidding

threshold,β(x,h), will be strictly increasing in the bidder’s signalx, for each equilibrium historyh.

Suppose that the auction is “one bidder away” from each bidder clinching a positive number of objects.

Then each bidder should bid up to her expected value for the objects,conditional on the lowest of the

other active bidders’ signals equaling her own signal. By doing so, she clinches objects precisely in those

situations where her expected value exceeds the price for the clinched objects, and she fails to clinch

16The careful reader may wish to note that, if we had instead utilized the basic specification of the auction rules of
Section 3.2, the equilibrium construction would have been much more complex. Moreover, it is unlikely that the resulting
equilibrium would have been efficient, except whenλi = λ for all i = 1,...,n.
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objects precisely in those situations where her expected value is less than the price for clinching the

objects.

Meanwhile, a bidder never need concern herself with the consequences of two bidders

simultaneously decreasing their quantities. Within any given historyh, simultaneous reduction is a zero-

probability event, since the joint distribution of signals has no mass points and each bidding threshold

βi(x,h) is strictly increasing in signalx. Between historiesh and h +1, bidders do reduce their bidding

thresholds (i.e.,βi(x,h +1) < βi(x,h )), and in general this could give rise to simultaneous reductions;

however, by “turning back the clock” sufficiently far, the auction design can completely avoid this

problem.

Finally, suppose that the auction is “two or more bidders away” from a given bidderi clinching

a positive number of objects. Then bidderi does equally well with a wide array of strategies, since in

equilibrium there is no danger of her clinching until some other bidder first withdraws — and she can

withdraw immediately thereafter. One convenient available choice is to again have bidderi bid up to her

expected value for the objects, conditional on the lowest of the other active bidders’ signals equaling her

own signal. By specifying strategies in this way, bidders demanding larger quantities, who may clinch

at the next withdrawal, and bidders demanding smaller quantities, who cannot immediately clinch, use

identical strategies, yielding efficiency even in asymmetric quantity situations.

In an auction withn initial bidders, defineN= {1,...,n}, and for any bidderi (i ∈ N), defineN\ { i } =

{ j ∈ N j ≠ i }. For any j ( j =1, ... ,n−1), letYj
−i denote thejth-order statistic of the signals of the bidders

N\ { i } , that is, thejth highest signal received by all the bidders excluding bidderi. Using the symmetry

assumption A.4, the distribution ofYj
−i is independent ofi, and so the superscript “−i” will henceforth be

suppressed fromYj
−i .

Define a bidderi to be active after historyh if and only if qi(h) > Ci(h). Furthermore, define

J(h) = { i ∈N qi(h) > Ci(h)} to be the cardinality of the set of active bidders after historyh. Then

n−J(h) bidders have dropped out at historyh. Let bidderi be one of the remaining active bidders and

suppose that the bidders who have dropped out correspond to the order statisticsYJ(h),...,Yn−1. Let us

define:

(11) vj (x,y yj , ... ,yn−1) = E[ Vi Xi = x,Yj−1 = y,Yj = yj , ... ,Yn−1 = yn−1] , for j = 2,...,n.

We now define the equilibrium bidding threshold for any active bidderi to be her expected value for the

objects, conditional on the lowest of the other active bidders’ signals equaling her own signalx (and on

the inferred realizations ofYJ(h),...,Yn−1). Algebraically, this is expressed by:

where J(h) is the number of active bidders, andyJ(h),...,yn−1 are the realizations ofYJ(h),...,Yn−1,

(12) β (x,h) vJ(h) (x,x yJ(h) , ... ,yn 1) and γ i (x,h) Ci (h) ,

respectively, inferred from the historyh and the equilibrium strategies. Further observe that the bidding

thresholdβ(x,h) of Eq. (12) is independent ofi, and that if all bidders useβ(x,h), then the equilibrium

inferencesyJ(h),...,yn−1 are given implicitly by the solutions inyj to:
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whereh( j+1) denotes the extant history when the (j+1)st active bidder dropped out of the auction,pj+1

(13) β (yj ,h( j 1)) pj 1 , for j J(h) , ... ,n−1 ,

denotes the price at which the (j+1)st active bidder dropped out, and the shift fromj to j+1 is necessitated

by the fact that the definition ofyj excludes one of the active bidders from consideration.

Finally, we shall state an inequality on the restart function,r(h), which needs to be satisfied in

order for the main theorem to hold. Consider any historyh which concludes with a bidder dropping out,

and lety(h) be the equilibrium inference about the signal of the bidder to drop out at the conclusion of

h. We require:

for all possible equilibrium historiesh which conclude with a bidder dropping out. The right side of

(14) r (h) ≤ vJ(h) ( y(h) ,y(h) y(h) ,yJ(h) 1 , ... ,yn 1) ,

Inequality (14) is the bidding thresholdafter history hfor a bidder receiving the same signal,y(h), as the

bidder who dropped out at the conclusion ofh. Ineq. (14) thus tells us that no bidder receiving a signal

x> y(h) would wish to drop out of the auction at the precise moment that the clock restarts (at pricer(h))

after historyh. Since, by the definition ofy(h), all bidders receiving signalsx ≤ y(h) should already have

dropped out of the auction by the time the clock stopped at historyh, Ineq. (14) guarantees that there are

no mass points in the equilibrium dropping-out behavior.

Conversely, if Ineq. (14) is not satisfied, then there exists an equilibrium history such that bidders

with a nondegenerate interval of signals attempt to drop out at the moment that the clock restarts. This

implies that bidders’ signals cannot always be fully inferred by the price at which they drop out and, more

crucially, it introduces a positive probability that two bidders attempt to drop out simultaneously in

equilibrium, vastly complicating the analysis.

Finally, let us fully specify bidders’ updating rules about other bidders’ signals. The treatment

of unobservabledeviations is obvious: if a bidder whose true signal isx′ drops out of the auction at the

time which a bidder with signalx is supposed to drop out, then this bidder must be taken by her rivals

to have received a signal ofx. However, the treatment ofobservabledeviations is not obvious, and in

fact the issue does not even arise in standard auction analyses where bidders possess unit demands. As

we see in eq. (12), at any moment in time, any bidder is expected to either hold constant her quantity

demanded or to completely drop out of the auction. What should her rivals infer if bidderj decreases her

demanded quantity somewhat but still demands more than she has already clinched? The following

Updating Rule answers this question by specifying that rivals only attach informational significance to

complete reductions in quantity: a partial reduction is treated the same as no reduction at all. Such an

Updating Rule has some attractive intuitive appeal: in the general symmetric model under consideration,

each bidder has a constant marginal value for each unit; given that bidders’ demand reductions have no

effect on the prices that they themselves face, the only purpose in partly reducing demand could be to

deceive other bidders, so such partial reductions should be completely disregarded by rivals. The same

updating rule continues to be used following both equilibrium and out-of-equilibrium histories. To be

precise:
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UPDATING RULE FOR { β(x,h),γi(x,h)} i=1
n . As long as bidderj remains active (i.e.,qj > Cj ), any

other bidders infer that bidderj’s signal is distributed according to the prior distribution (conditioned on

information on the other bidders’ signals), truncated from below at the lowest signal which is supposed

to remain active at the current price under the bidding thresholdβ(x,h). At whatever moment bidderj

ceases to be active (i.e.,qj = Cj ), other bidders update their beliefs about bidderj’s signal to the lowest

point remaining in the support of their (truncated) distributions and they maintain these beliefs thereafter.

We now are ready to state one of the main results of the paper:

THEOREM 3. For the general symmetric model withM objects andn bidders, who possess

capacities ofλi (i = 1,...,n), respectively, suppose that the restart ruler( ) satisfies Inequality (14). Then

the n-tuple of strategies {β(x,h),γi(x,h)} i=1
n defined by Eq. (12), together with the associated Updating

Rule, constitutes an efficient equilibrium of the alternative ascending-bid auction.

5.3 Comparison with the Milgrom-Weber Equilibrium for a Single Object

Theorem 3, as stated above, holds for allM and all λi (i = 1,...,n). Thus, as a special case,

Theorem 3 must hold for the case ofM = λ1 = ... = λn, i.e., the single-object auction studied by Milgrom

and Weber (1982a). Moreover, the alternative ascending-bid auction, when restricted to this environment,

reduces to the standard English auction. Thus, it is interesting to note that the equilibrium of Theorem

3 differs somewhat from the Milgrom-Weber equilibrium: all but the penultimate bidder drop out of the

auction at different bidding thresholds, but the final outcome is the same. The key to understanding the

difference is to observe that Theorem 3 implicitly introduces “turning-back-the-clock” even into the single-

object environment, and this somewhat alters the reasoning of bidders.

In Milgrom and Weber (1982a, Eq. (6)), whenJ bidders remain, bidderi with signalx stays in

the auction until the price reaches:

(15) p = E[ Vi Xi = x,Y1 = x, ... ,YJ−1 = x,YJ = yJ , ... ,Yn−1 = yn−1] .

That is, bidderi bids up to her expected value for the objects, conditional onall of the other active

bidders’ signals equaling her own signal. By contrast, in Eq. (12) above, whenJ bidders remain, bidder

i with signalx stays in the auction until the price reaches:

(16) p = E[ Vi Xi = x,YJ−1 = x,YJ = yJ , ... ,Yn−1 = yn−1] .

That is, bidderi bids up to her expected value for the objects, conditional onthe lowestof the other active

bidders’ signals equaling her own signal.

The reason that the bidding threshold (16) does not work as an equilibrium in the Milgrom-Weber

formulation is that, after other bidders have dropped out, bidderi using threshold (16) might regret staying

in the auction as long as she did. With “turning-back-the-clock” specified so as to satisfy Ineq. (14) in

the current article, this is no longer a problem.
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If we had attempted to generalize Milgrom and Weber’s bidding threshold (15) in the current

article, we would have found ourselves facing a serious problem. Namely, (15) would generalize to a

prescription that bidderi should bid up to her expected value for the objects, conditional onsufficiently

manyof the other active bidders’ signals equaling her own signal so that she clinches objects. Such a

bidding strategy behaves badly in a model where some bidders demand more than one unit. The difficulty

occurs in subgames where different bidders are demanding different quantities. A bidderi demanding a

larger quantity may require fewer opponents to drop out in order to clinch than a bidderj demanding a

smaller quantity. Hence, it may be the case that their signals,xi andxj respectively, may be equal, but

biddersi and j utilize unequal price thresholds in reducing their quantities. Thus, efficiency is impaired,

and the overall equilibrium construction is vastly complicated. Moreover, this problem must necessarily

be tackled even if the initial capacities of bidders are equal (i.e.,λ1 = ... = λn > 1), since subgames exist

in which partial reductions occur, and different bidders have different capacities in such subgames.

6 The Champion’s Plague: Comparison with the Vickrey Auction

Among the most famous results in the single-object auction literature is the comparison between

the sealed-bid, second-price auction (the static auction) and the English auction (the associated dynamic

auction). The analogous question for auctions of multiple identical objects is the comparison between the

Vickrey auction and the alternative ascending-bid auction. We have already seen in Section 4 that, for

the pure private values case — and similar to the single-object results — the static auction and dynamic

auction are largely equivalent (although the dynamic auction may be cognitively simpler and more

preserving of privacy). In this section, we extend the comparison to the general symmetric model with

interdependent values. Here, we find that the dynamic auction outperforms the static auction, for two

reasons. First, as in the single-object analysis of Milgrom and Weber (1982a), the dynamic auction

provides greater linkage between the auction outcome and the bidders’ affiliated signals, increasing the

seller’s expected revenues. Second, a new effect not present in the single-object analysis is discovered.

The second effect will be referred to as the “Champion’s Plague.”

As in Ausubel and Cramton’s (1996) analysis of the uniform-price auction for the general

symmetric model, the analysis dichotomizes into two cases: the case where bidders have identical

capacities and where the number of available objects is an integer multiple of the bidders’ capacities; and

the case where either bidders’ capacities are unequal or where the number of available objects is not an

integer multiple of the bidders’ capacities. The intuitive explanation for the difference between these two

cases is that whenK ≡ M/λ is an integer, the model is closely related to one in which bidders possessunit

demands and compete forK indivisible objects. There, the Vickrey auction coincides with the (K+1)st

price auction, and the alternative ascending-bid auction coincides with the standard ascending-bid auction.

However, whenK ≡ M/λ is not an integer or theλi are not equal, the above auction forms do not

coincide. In the first case, an equilibrium of the Vickrey auction is exhibited which falls short of the

equilibrium of Theorem 3 only due to the Linkage Principle. In the second case, the Champion’s Plague

emerges as a factor as well.



25

6.1 Analysis whenM/λ is an Integer: The Linkage Principle

In this section, we consider the case whereK ≡ M/λ is an integer, meaning that the number of

available objects is an integer multiple of the (identical) capacities of every bidder. We will see that the

results very much parallel those of Milgrom and Weber (1982a) for a single object. Despite

interdependent values, the Vickrey auction, as well as the alternative ascending-bid auction, possesses

efficient equilibria. However, the seller’s expected revenues from the alternative ascending-bid auction

(weakly) exceeds those from the Vickrey auction. The intuition is that the high bidders have more

information available about the losing bidders’ signals in the ascending-bid auction than in the sealed-bid

auction; if bidders’ signals are affiliated, this also gives the high bidders extra information about the other

high bidders’ signals, eroding the informational rents which any high bidder can extract.

A simple way to construct efficient equilibria of the Vickrey auction in this case is to restrict

bidders to submitλ identical bids. It is straightforward to see that — in any of the auction formats

considered — if each of the other bidders is utilizing a strategy consisting of submittingλ identical bids,

then it is a best response for the remaining bidder to also submitλ identical bids. (However — and quite

importantly — the reader should observe that the previous sentence doesnot remain true in the case where

K ≡ M/λ is not an integer or theλi are not equal.) In turn, equilibria satisfying theλ-identical-bid

restriction exactly coincide, along the equilibrium path, with equilibria of the model where bidders with

unit demands compete forK identical objects. Thus, the results whenK ≡ M/λ is an integer are almost

formally equivalent to the analysis of the model where bidders with unit demands compete forK objects,

and are straightforward extensions of the results for auctions of a single object.17

We begin by constructing an efficient equilibrium of the Vickrey auction. Let us define:

(17) vK(x,y) = E[ Vi Xi = x, YK = y] .

By the same reasoning as in Milgrom and Weber (1982a, Theorem 6), we have:

THEOREM 4. Let K ≡ M/λ be an integer, and defineb*(x) = vK(x,x). Then, for the general

symmetric model withn bidders each of whom has unit demand, then-tuple of strategies (b* , ... , b*) is

an efficient equilibrium of the (K+1)st-price auction forK objects. Therefore, withn bidders each of

whom has capacity forλ objects, the correspondingn-tuple of strategies consisting ofλ identical bids is

an efficient equilibrium of the Vickrey auction (as well as of the uniform-price auction) forM objects.

As we have already seen in Section 5, the alternative ascending-bid auction also exhibits an

efficient equilibrium. (Indeed, in the case whereK ≡ M/λ is an integer, it seems possible that the

17Observe that the first parts of Theorems 4 and 5 (treatingK-object auctions with unit demands) also appear in Milgrom
and Weber (1982b). However, since the earlier paper remains unpublished, I include the results for completeness.
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equilibrium path coincides with an equilibrium path of the standard ascending-bid auction.)18 Analogous

to the standard results for a single-object auction, the seller’s expected revenues from the sealed-bid

auction and the ascending-bid auction can be ranked, and the ascending-bid auction does better. By the

same reasoning as in Milgrom and Weber (1982a, Theorem 11), we have:

THEOREM 5. Let K ≡ M/λ be an integer. Then, for theK-object auction with unit demands, the

efficient equilibrium of the standard ascending-bid auction raises the same or higher expected revenues

as the efficient equilibrium of the (K+1)st-price sealed-bid auction. Consequently, for theM-object auction

where bidders each have capacities ofλ objects, the efficient equilibrium of the alternative ascending-bid

auction raises the same or higher expected revenues as the efficient equilibrium of the Vickrey auction.

6.2 Analysis WhenM/λ is Not an Integer: The Champion’s Plague

When K ≡ M/λ is not an integer or theλi are not equal, we know from Ausubel and Cramton

(1996, Theorems 1 and 2) that the uniform-price auction does not admit efficient equilibria, in both pure

private values and interdependent values models. Surprisingly, we shall now see that when bidders’ values

are interdependent, the inefficiency result also extends to the Vickrey auction.

The intuition for the result is a generalization of the standard “Winner’s Curse” for single-object

auctions. This classic proposition of auction theory states that, in a particular informational sense, winning

is “bad news.” More precisely, we may state:

THE WINNER’S CURSE. In a single-object auction with interdependent values,

a bidder’s expected value conditional on winning the object is less than her unconditional

expected value.

Now consider instead, for example, the general symmetric model withM =3 and λ = 2, i.e., an

environment where each bidder equally values two objects and there are three objects available. Then,

if objects are assigned efficiently, winningone object indicates to a bidder that her signal equaled the

second-order statistic of all bidders’ signals, while winningtwoobjects indicates to a bidder that her signal

equaled thefirst-order statistic of all bidders’ signals. Thus, from the same informational perspective as

the Winner’s Curse, if winning one object is bad news, then winning two objects is worse news. For lack

of better terminology, let us call this:

THE CHAMPION’S PLAGUE. In a multiple-object auction with interdependent

values, a bidder’s expected value conditional on winning more objects is less than her

expected value conditional on winning fewer objects.

18However, such a result is not the least bid obvious. Certainly, so long as bidders are constrained to demand either zero
or λ units, the standard ascending-bid auction works perfectly well forK ≡ M/λ an integer. However, it is possible that
difficulties will appear in (out-of-equilibrium) subgames where 0 <qi < λ for some bidderi.
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The Champion’s Plague can be easily used to show that, with interdependent values and if

K ≡ M/λ is not an integer, any equilibrium of the Vickrey auction for the general symmetric model is

inefficient. The first step of the reasoning is the same as in Ausubel and Cramton (1996, Theorems 1 and

2): In order for an equilibrium of the Vickrey auction to be efficient, it must be the case that every bid

of every bidder is the same function of the bidder’s signal. The formal analysis is simplified if we assume

that the set,B, of all allowable bids is a bounded set. Letbi
j(x) denote thejth-highest bid submitted by

bidder i when her signal isx. We have the following lemma:

LEMMA 1. Suppose that an equilibrium of the Vickrey auction assigns objects to the bidders

receiving the highest signals, for almost every realization. Then there exists a functionφ( ) from signals

to bids which provides the bids of all bidders: for every bidderi ( i = 1 , ... ,n) and bidj ( j = 1, ... ,λi ), we

havebi
j(x) = φ(x) almost everywhere.

The second step of the reasoning is to suppose that all bidders other thani are using bid functions which

satisfy Lemma 1. Then, with interdependent values, Bidderi faces the Champion’s Plague, and therefore

her best-response bid function is always to bid strictly less for the last unit than for the first. This

establishes that no equilibrium of the Vickrey auction is efficient. We have:

THEOREM 6. Unlessλi ≡ λ ( i = 1 , ... ,n) andM/λ is an integer, there does not exist an efficient

equilibrium of the Vickrey auction.

By contrast, Theorem 3 demonstrated the existence of an efficient equilibrium in the alternative

ascending-bid auction. Thus, if bidders play according to the equilibrium of Theorem 3, then the dynamic

auction outperforms the static auction insofar as efficiency. The intuition for this result can again be most

easily seen withM =3 andλ = 2. In the efficient equilibrium of the alternative ascending-bid auction, a

winning bidder clinches her first unit when the bidder with the third-highest signal drops out of the

auction, and clinches her second unit not until when the bidder with the second-highest signal drops out.

This division into two separate times enables a winning bidder to adjust her bidding threshold for the

Champion’s Plague.

Obviously, Theorem 6 shouldnot be interpreted to mean that there does not existany efficient

static mechanism in this environment. Indeed, a straightforward way to define an efficient static

mechanism is to have the bidders report their signals to a mediator, and for the mediator to carry out the

precise assignments and payments which would be generated by operating the alternative ascending-bid

auction. Rather, the correct interpretation of Theorem 6 is merely that the rules of the standard Vickrey

auction do not properly take account of value interdependencies. In Appendix B, we will briefly develop

a “generalized Vickrey auction” which does yield efficient outcomes in the face of value

interdependencies. However, unlike the standard Vickrey auction or the alternative ascending-bid auction,

the generalized Vickrey auction requires the auction designer to know a great deal of information about

the bidders’ utility functions, and requires the auction designer to change the rules whenever the bidders’

specific utility functions change.
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7 A Symmetric Example with Interdependent Values

One straightforward example of a model satisfying the assumptions of the general symmetric

model is the following:

EXAMPLE 2. Suppose that there aren bidders, who respectively receive signals denotedXi ( i =1, ... ,n)

which are independently and uniformly distributed on [0,1]. LetX−i denote the arithmetic average ofX−i .

We can then consider:Vi = βXi + (1 −β)X−i , for eachi ( i =1, ... ,n), whereβ ∈ (1/n,1).

Observe that, asβ → 1, this example approaches a model with independent private values and, asβ → 1/n,

this example approaches a model with pure common values. However, here, we consider the continuum

of cases in between. Also observe that the (independent) signals in Example 2 satisfy only weak

affiliation and not strict affiliation, so therefore the weak inequality in Theorem 5 may only be satisfied

with equality.

Let us now develop equilibrium bidding rules for the alternative ascending-bid auction, for the

special case wheren = 3, M = 3, andλ = 2. That is, a seller offers three units of a homogeneous good

to three bidders, each of whom has a constant marginal value for up to two units. If the auctioneer begins

with a price of zero, all three bidders will indicate that they are “in” for two units each. As the auctioneer

raises the price, the bidder who received the lowest signal will drop out at a price which we may denote

p3. At this point, each of the remaining two bidders “clinch” winning one unit each at a price ofp3. The

auctioneer then “turns back the clock,” for example, to zero, and resumes naming prices. As the

auctioneer raises the price, the bidder who received the middle-valued signal will drop out at a price which

we may denotep2. At this point, the remaining bidder (who received the highest signal) clinches a second

unit at a price ofp2, and the auction concludes. Observe that this symmetric equilibrium yields an

efficient outcome: Ifx1 > x2 > x3, thenv1 > v2 > v3. We calculate:

E[ Vi Xi = x,Y2 = x] = βx + ½(1−β)[(1+x)/2 + x] = [(3+ β)/4]x + (1−β)/4.

E[ Vi Xi = x,Y1 = x,Y2 = y2] = βx + ½(1−β)(x + y2) = ½(1+β)x + ½(1−β)y2.

These calculations thus yield:

PROPOSITION 1. For Example 2 withn = 3, M = 3, andλ = 2, the alternative ascending-bid

auction with full bid information possesses an efficient equilibrium consisting of the following strategies:

Before any bidder has dropped out, Bidderi ( i =1,2,3 ) stays in for two units until such time

that the price equals [(3+β)/4]xi + (1−β)/4; if the price reaches this level before any

other bidder has dropped down to zero units, Bidderi then drops to zero units.

After one other bidder has dropped out at a pricep3, Bidder i ( i =1,2,3 ) calculates that

bidder’s implied signal,xd, by [(3+β)/4]xd + (1−β)/4 = p3. Bidder i stays in until such

time that the price equals ½(1+β)xi + ½(1−β)xd; if the price reaches this level before

the other remaining bidder has dropped out, Bidderi then drops out.
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By contrast, Theorem 2 of Ausubel and Cramton (1996) and Theorem 6 above imply the following second

proposition:

PROPOSITION 2. For Example 2 withn = 3, M = 3, and λ = 2, there do not exist efficient

equilibria of either the uniform-price auction or the Vickrey auction.

8 Conclusion

This article has proposed a new ascending-bid auction format for multiple objects, and has shown

that it yields efficient outcomes when a multi-unit generalization of the Milgrom and Weber (1982a)

assumptions is satisfied. In the formal analysis, the model was assumed to be symmetric among bidders,

in the sense that their signals were drawn from the same distribution and their values were given by the

same function of their own and others’ signals, and the model was assumed to be symmetric among

objects, in the sense that a bidder’s marginal value for each additional unit (up to the bidder’s capacity)

was constant. The first observation with which I conclude this article is to note that these assumptions,

while sufficient for efficiency, are hardlynecessary. Indeed, an interesting research question is to

characterize exactly what minimal set of assumptions leads to efficient outcomes in the new auction.

As a straightforward example of an asymmetric model where efficiency still holds, consider the

following scenario, which extends a single-object example of Maskin (1992, p. 127, footnote 1).

EXAMPLE 3. Suppose that there are three bidders, who respectively receive signals denoted

Xi ( i =1,2,3 ) which are independently and uniformly distributed on [0,1]. Their signals map to constant

marginal valuations according to the functions:

V1 = X1 ,

V2 = X2 ,

V3 = X3 + 2/3X1 + 2/3X2 .

The number of objects,M, and the bidders’ respective capacities,λi ( i =1,2,3 ), are arbitrary.

Observe that, in Example 3, it can never be the case that Bidder 3 has the lowest valuation, asV3 > ½(V1+V2).

Consequently, it is straightforward to see that the following strategies form an efficient equilibrium:19

19The indicated bidding thresholds are calculated according to the same principle as in Section 5: Any bidder bids up to
her expected value for the object, conditional on the lowest of the other active bidders’ values equaling her own value.
(In addition, Bidder 3 never updates her beliefs onX1 or X2 above 1, the top of the distribution’s support.) The calculation is
trivial for Bidders 1 and 2, as their values are purely private. Observe that, in equilibrium, either Bidder 1 or Bidder 2 drops
out before the price reaches 1, so Bidder 3 is never the first to drop out. (However, since she never updates above 1, she never
estimates her value at greater than 4/3 +X3.) Without loss of generality, suppose that Bidder 1 is the first to drop out, at price
p1; the remaining bidders infer thatX1 =p1. Bidder 3 thus calculates her value to be 2/3p1 + 2/3X2 + X3. Bidder 3’s value equals
Bidder 2’s value if: X2 = 2/3p1 + 2/3X2 + X3, which impliesX2 = 2p1 + 3X3. Thus, conditional on Bidder 2’s value equaling her
own, Bidder 3’s value equals 2/3p1 + 2/3(2p1 + 3X3) +X3 = 2p1 + 3X3, her bidding threshold in equilibrium play. (However, since
she never updates above 1, she never estimates her value at greater than 2/3p1 + 2/3 +X3.)
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(18) BEFORE ANY BIDDER HAS DROPPED OUT:

Bidder 1 maintains a quantityq1 = λ1 until p = X1, and then drops out.

Bidder 2 maintains a quantityq2 = λ2 until p = X2, and then drops out.

Bidder 3 maintains a quantityq3 = λ3 until p = 4/3 + X3, and then drops out.

AFTER BIDDER i ( i = 1 OR 2) HAS DROPPED OUT AT PRICEpi ≤ 1:

Bidder j ( j = 3−i ) maintains a quantityqj = λj until p = Xj, and then drops out.

Bidder 3 maintains a quantityq3 = λ3 until p = min {2pi + 3X3 , 2/3pi + 2/3 +X3}, and then

drops out.

It is easy to verify that, given bidding strategies (18), the bidders drop out in ascending order of value,

for all possible realizations of (X1,X2,X3). Moreover, observe that the “turning back the clock” of Section

3.3 is never required here. Thus, given any number of objects and any bidder capacities, the new

ascending-bid auction format yields an efficient allocation.

By way of contrast, none of the standard sealed-bid auction formats could yield efficiency for

Example 3. Consider a realization ofX2 = 5/6 andX3 = 1/6. Whether Bidder 2 or Bidder 3 should first

be assigned objects depends, respectively, on whetherX1 is less than 1/6 orX1 is greater than 1/6.

However, in any sealed-bid format, Bidders 2 and 3 cannot distinguish between a state of the world where

X1 = 1/6 −ε and a state of the world whereX1 = 1/6 +ε, and they submit the same bids in either of those

states. Moreover, under standard auction rules, the bid of Bidder 1 is an irrelevant low bid which does

not influence the assignment of objects to Bidder 2 versus Bidder 3.

Nor can the standard ascending-bid auction yield efficiency, unlessλ1 = λ2 = λ3 ≡ λ andM/λ is

an integer (Ausubel and Cramton, 1996, Theorem 2).

A second observation to make is that I have considered models herein with the property that

bidders either have pure private values or effectively a combination of private values and common values.

It is also interesting to compare the equilibrium outcomes of various auction formats when bidders have

pure common values. With pure common values, all assignments of the objects are allocatively efficient;

however, different auction rules may yield different seller revenues. We perform a comparison of various

auction formats in Ausubel and Cramton (1997).

A final observation with which I conclude this article is that the proposed auction format is

conducted with a clock: the auctioneer successively announces prices, and the bidders respond with

quantities. It should be possible to obtain similar results if, instead of using the clock, one proceeds in

the mode of the FCC auctions and allows the participants to name their own bids.20 This is the subject

of continuing research.

20Obviously, substantive changes in the auction rules are required from the rules of the actual FCC auctions, given that (as
we have seen in Section 2) the FCC rules lent themselves through arbitrage to outcomes with a uniform-price character.
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APPENDIX A

PROOF OFTHEOREM 1.

At any point in the alternative ascending-bid auction up until its end, all of the payoff-relevant

events in the auction occur through clinching. The cumulative quantity of clinched units for bidderi at

price p is given by Eq. (2). Observe that the right side of Eq. (2) is independent of bidderi’s actions,

except through the implicit requirement thatqi > M−∑
j

qj for =0,...,L−1; hence, changing one’s own

bid strategy can have no effect on payoff, except to the extent that (1) it leads rival bidders to respond;

or (2) it determines one’s own final quantityqi
* .

With no bid information, a rival bidder cannot distinguish between two strategies of bidderi,

except to the extent that one or the other ends the auction. Hence, changing one’s own bid strategy cannot

lead rival bidders to respond. Therefore, bidderi maximizes her payoff in all states of the world by

simply taking the clinching process of Eq. (2) as exogenous and selecting a strategy which optimally

selectsqi
*. Observe that bidderi strictly prefers clinching akth object at clock pricep over not clinching

if and only if Vi,k > p. Since marginal utilities were assumed (weakly) diminishing, we conclude that

sincere bidding is a weakly-dominant strategy in this auction and that all bidders using sincere bidding

is an efficient equilibrium.

PROOF OFTHEOREM 2.

For either full bid information or aggregate bid information, let∑0 denote the class of strategy

n-tuples such that bidders’ quantities depend only on the current price, andnot on previous quantity

reductions of other bidders. Observe, by the same reasoning as in the proof of Theorem 1, that sincere

bidding is a best response to the limited class of strategies∑0. Since sincere bidding itself is an element

of ∑0, this establishes that sincere bidding by all bidders is an equilibrium.

PROOF OFTHEOREM 3.

By its definition in Eqs. (11) and (12), the bidding thresholdβ(x,h) is increasing in the signalx,

for each historyh. Hence, if biddersN\ { i } play according toβ(x,h) and if bidderi clinches a positive

number of units due to one ofJ active bidders decreasing her quantity, then the quantity-decreasing bidder

was using a bidding threshold ofvJ(Y,Y yJ , ... ,yn−1), whereY denotes the quantity-decreasing bidder’s

own signal. Evaluated atY= yJ−1, this yields a price for bidderi of:

(18) vJ(yJ−1,yJ−1 yJ , ... ,yn−1) = E[ Vi Xi = yJ−1,YJ−1 = yJ−1,YJ = yJ , ... ,Yn−1 = yn−1] .

Meanwhile, bidderi’s conditional expectation ofVi given Xi , YJ−1,YJ , ... ,Yn−1 is given by:

(19) vJ(x,yJ−1 yJ , ... ,yn−1) = E[ Vi Xi = x,YJ−1 = yJ−1,YJ = yJ , ... ,Yn−1 = yn−1] .
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Combining Eqs. (18) and (19), and using the fact thatvJ(x,yJ−1 yJ , ... ,yn−1) is increasing inx, we see that

bidder i’s conditional expected payoff on the clinched units is positive wheneverx > yJ−1 and is negative

wheneverx < yJ−1. [This can also be seen by expanding the expectations operator, as in the proof of

Theorem 4, below.] Observe that, if bidderi herself uses strategyβ(x,h), bidder i will clinch objects

wheneverXi > YJ−1 and will not clinch objects wheneverXi < YJ−1, allowing us to conclude thatβ(x,h)

is a best response for bidderi providing that clinching is due tooneof J active bidders decreasing her

quantity. Moreover, bidderi can disregard the possibility that clinching is due totwo or morebidders

decreasing their quantities: using the facts that each bidding thresholdβi(x,h) is strictly increasing in signal

x, that Ineq. (14) is satisfied, and that the joint distribution of signals has no mass points, we see that

simultaneous reduction is a zero-probability event. In addition, a partial decrease in quantity demanded

cannot be a profitable deviation for bidderi , as it does not prompt biddersN\ { i } to alter their bidding

thresholds. The above argument holds for every possibleJ, establishing thatβ(x,h) is a best response for

bidder i after all histories.

PROOF OFTHEOREM 4.

We will assume that biddersN\ { i } play according to the bid functionb*(x), and we will then

demonstrate thatb*(x) is the optimal response for bidderi. By assumption A.1,b*( ) is a strictly

increasing function. Hence, bidderi wins an object if and only if she bidsb > b*(YK) (ignoring ties, which

are zero-probability events). Moreover, whenever bidderi wins an object, she pays a price ofb*(YK).

Similar to the reasoning in Milgrom and Weber (1982a, Theorem 6), bidderi’s expected payoff from

bidding b when her signal isx is therefore:

E { [ Vi−b*(YK) ] 1
{ b*(YK) < b}

Xi =x} = E { E { [ Vi−b*(YK) ] 1
{ b*(YK) < b}

Xi ,YK } Xi =x} =

= E { [ vK(Xi,YK)−vK(YK,YK) ] 1
{ b*(YK) < b}

Xi =x} = ⌡
⌠

b −1(b)

−∞

[vK(x,z) − vK(z,z)] dFYK
(z x) ,

where denotes integration against the conditional distribution ofYK given Xi = x. Again bydFYK
(z x)

assumption A.1, the integrand is positive forz < x and negative forz > x. Hence, the integral is

(uniquely) maximized by choosingb so thatb* −1(b) = x, i.e., b = b*(x). This establishes thatb*( ) is the

(unique) best response for bidderi, as required.

PROOF OFTHEOREM 5.

As a minor variation on the notation of eq. (11), let us define:w(x,y;yK+1, ... ,yn−1) =

E[ Vi Xi = x,YK = y,YK+1 = yK+1, ... ,Yn−1 = yn−1] . If all n bidders use the strategies defined by Eq. (12)

(and by the symmetry assumed in A.1 and A.4), the seller’s expected revenue in the standard or alternative

ascending-bid auction is given byE { w(YK,YK;YK+1, ... ,Yn−1) Xi > YK }. Meanwhile, if all n bidders use

the strategy defined in Theorem 4, the seller’s expected revenue in the (K+1)st-price or uniform-price
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auction is given byE { vK(YK,YK ) Xi > YK }. Closely following Milgrom and Weber (1982a, Theorem

8), we will now demonstrate that the first quantity is at least as great as the second quantity. Observe that,

if x > y, then:

vK(y,y) = E[ Vi Xi = y, YK = y]

= E{ E[ Vi Xi = x,YK = y,YK+1 = yK+1, ... ,Yn−1 = yn−1] Xi = y, YK = y}

= E [ w(Xi ,YK;YK+1, ... ,Yn−1) Xi = y, YK = y]

= E [ w(YK,YK;YK+1, ... ,Yn−1) Xi = y, YK = y]

≤ E [ w(YK,YK;YK+1, ... ,Yn−1) Xi = x, YK = y] .

Consequently, taking the conditional expectation of each side of this inequality, givenXi > YK, yields:

E { vK(YK,YK ) Xi > YK } ≤ E{ E [ w(YK,YK;YK+1, ... ,Yn−1) Xi , YK ] Xi > YK }

= E{ w(YK,YK;YK+1, ... ,Yn−1) Xi > YK } .

This inequality establishes that the seller’s expected revenue from the dynamic auctions is at least the

seller’s expected revenue from the static auctions, as required.

PROOF OFLEMMA 1.

Let m denote the greatest integer such thatmλ < M. First, we will demonstrate that any bidder

must use the same bid for all quantities, almost everywhere in signals. If objects are assigned to the

bidders receiving the highest signals,qi
* = λ if xi > x(m+1) andqi

* = 0 if xi < x(m+1), wherex(m+1) denotes the

(m+1)st-order-statistic ofall bidders’ signals. Hence, for anyx > x′, bi
λ(x) ≥ bi

1(x′). Otherwise, when

x′ < x(m+1) < x, x must win λ and x′ must win 0, but this cannot happen ifbi
λ(x) < bi

1(x′). Defining

Bi(x) = [bi
λ(x) , bi

1(x)], this implies that Bi( ) is a weakly-increasing correspondence. Also define

∆i(x) = bi
1(x) − bi

λ(x), andZi = { x ∆i(x) > 0 }. Thus, Zi is the set of allx such that bidderi’s bids for

all quantities are not the same. Since higher bids are accepted before lower bids,∆i(x) ≥ 0 for all x. Since

all bids bi
j( ) ∈ B, a bounded set, there can be at most countably manyx such that∆i(x) > 0, and so the

measure ofZi equals zero, for alli = 1,...,n. We may thus defineφi(x) so thatbi
j(x) = φi(x) for all

j = 1,...,λ and allx ∉ Zi.

Second, we will demonstrate that all bidders use the same bid function, almost everywhere in

signals. Otherwise, and using the fact that a monotonic function is continuous almost everywhere, there

exist biddersi andh (i ≠ h) and signalsxi ∉ Zi andxh ∉ Zh such thatxi > xh but φi(xi) < φh(xh). But then,

consider any realization ofx1,...,xn such thatxi = x(m) and xh < x(m+1) (this occurs with strictly positive

probability). Assignment of the objects to the bidders receiving the highest signals requires thati win λ
andh win 0. But this cannot happen, sinceφi(xi) < φh(xh). Hence, we conclude that the bids are constant

in signals:bi
j(x) = φ(x) for almost everyx.

Similar reasoning applies if theλi are unequal.
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PROOF OFTHEOREM 6.

Suppose that an efficient equilibrium of the Vickrey auction exists. By Lemma 1, each bidder must

use the same bid function for quantities 1 , ... ,λ. Suppose thatM/λ is not an integer. Letm denote the

greatest integer such thatmλ < M. By the usual reasoning in the auctions literature, bidderi’s bid for her

last unit isbi
λ(x) = E[ Vi Xi = x, Ym = y] , since bidderi wins λ units if and only if her signal is at least

themth order statistic of the other bidders. However, bidderi’s bid for her first unit isbi
1(x) = E[ Vi Xi = x,

Ym+1 = y] , since bidderi wins 1 unit if and only if her signal is at least the (m+1)st order statistic of the

other bidders. Thus,bi
λ(x) < bi

1(x′), counter to Lemma 1, and yielding a contradiction to the existence of

an efficient equilibrium.

Similar reasoning can be applied to the bidder(s)i with the largest capacityλi, if the λi are

unequal.
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APPENDIX B

A GENERALIZED VICKREY AUCTION.

Given the focus of Sections 5 and 6 on the dynamic auction with interdependent values (and

where signals are affiliated), it seems useful to specify a static mechanism which can serve as a baseline

for comparison. As established by Theorem 6, the Vickrey auction does not provide an appropriate

baseline, since the Vickrey auction does not yield an efficient allocation. However, for the case of a

single object where bidders have interdependent values, Maskin (1992) defined a “modified second-price

auction” which is a useful baseline of comparison for the English auction. In the same spirit, in this

Appendix, we shall generalize Maskin’s approach by defining a “generalized Vickrey auction” for multiple

objects with interdependent values.21 The generalized Vickrey auction will provide an appropriate static

mechanism for comparison with the alternative ascending-bid auction.

Consider the following generalization of the model of Section 5.1. Letx ≡ (x1, ... ,xn) denote the

vector of n real-valued signals which are privately observed by then respective bidders. Also letx−i

denote the (n−1) signals observed by all bidders excepti . Now let ui
k(xi,x−i) denote the marginal value

of a kth unit for bidderi , given bidderi’s own signal and her opponents’ signals. We assume thatui
k( )

is continuous and nondecreasing in its arguments. We will not require symmetry of bidders for the

treatment in this Appendix, but an interesting special case of the allowed specification is ifui
k( ) is the

same nonnegative-valued function for eachi ( i =1, ... ,n), i.e., symmetric bidders.

Now let us extend the single-object treatment of Maskin (1992, p. 27) by defining the following

direct mechanism. Each bidderi ( i =1, ... ,n) reports her typexi to a mediator. Given then reports, the

mediator determines the allocation (K1, ... ,Kn) of quantities to then bidders which maximizes surplus.

Associated with thekth object assigned to bidderi (1 ≤ k ≤ Ki ), we definexi
k(x−i) to be the lowest signal

so that, if signalxi
k is reported by bidderi and if the vector of signalsx−i is reported by bidderi’s

opponents, then bidderi receives at leastk units in the efficient allocation. Finally, the payment rule is

defined as the following modification to the payment rule of the standard Vickrey auction: bidderi pays

thekth highest rejected value (other than her own) for herkth object, where values are evaluated for this

calculation usingxi
k(x−i) as the signal for bidderi and usingx−i (the vector of actual reports) as the signals

for bidder i’s opponents.

Observe that this static mechanism has the same general flavor as the Vickrey auction. Any

bidder’s submitted bid does not determine the price she pays (conditional on winning the object), since:

(1) à la Vickrey, her payment is determined only by the opportunity cost of providing her with the object;

and (2) in computing the opportunity cost, the bidder’s actual reported signal is not used, but rather the

lowest signal which would enable her to win the object.

21Contemporaneous research by Dasgupta and Maskin (1997) yields an auction mechanism which, for the case of multiple
identical objects, appears to be outcome-equivalent to the modified Vickrey auction of this Appendix.
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For the symmetric model treated in Sections 5 and 6, it is easy to verify that the generalized

Vickrey auction induces sincere bidding, and hence yields an efficient allocation. Thus, it is an

appropriate benchmark for comparison with the alternative ascending-bid auction.

Indeed, in any environment where bidders’ signals are strictly affiliated and where the efficient

allocation assigns a positive number of units to two or more bidders, the generalized Vickrey auction

outperforms the alternative ascending-bid auction for the symmetric model, in the sense of yielding an

equally efficient outcome but generating higher seller revenues. The explanation for this is quite simple.

At the time that units are first “clinched” in the alternative ascending-bid auction, the private signals of

two or more bidders have not yet been revealed, and so the payment is based on at most (n−2) private

signals. By contrast, in the generalized Vickrey auction, all of the private signals have been revealed to

the mediator, and the payment is then allowed to depend on (n−1) private signals. By the same argument

as in Milgrom and Weber (1982), the latter auction uses more private signals and hence yields higher

expected revenues.

However, the generalized Vickrey auction also has a serious disadvantage. Paraphrasing Maskin

(1992, p. 127, footnote 3): Notice, however, that the rules of the auction aredefinedin terms of the

functions ui
k( ). That is, the auction designer must know these functional forms, a demanding

requirement. By contrast, the designer can be ignorant of the forms if he uses the alternative ascending-

bid auction.
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PRICE

EXCEEDED

QUANTITIES DEMANDED AGGREGATE

DEMAND

CLINCHING OF LICENSES

Bidder

A

Bidder

B

Bidder

C

Bidder

D

Bidder

E

Bidder

F

10 3 1 3 2 2 1 12

25 3 1 3 2 1 1 11

45 3 1 3 2 0 1 10

49 3 1 2 2 0 0 8

65 3 1 2 1 0 0 7 A “clinches“ a license

75 3 0 2 1 0 0 6 A & C “clinch” licenses

85 3 0 2 0 0 0 5 A & C “clinch” licenses

TABLE 1

Progression of Bidding in Alternative Ascending-Bid Auction
for Example 1
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Figure 1

Payment Rule in the Vickrey Auction
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